Observers of quantum systems cannot agree to disagree
- URL: http://arxiv.org/abs/2102.08966v3
- Date: Thu, 2 Dec 2021 15:11:59 GMT
- Title: Observers of quantum systems cannot agree to disagree
- Authors: Patricia Contreras-Tejada, Giannicola Scarpa, Aleksander M. Kubicki,
Adam Brandenburger and Pierfranceso La Mura
- Abstract summary: We ask whether agreement between observers can serve as a physical principle that must hold for any theory of the world.
We construct examples of (postquantum) no-signaling boxes where observers can agree to disagree.
- Score: 55.41644538483948
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Is the world quantum? An active research line in quantum foundations is
devoted to exploring what constraints can rule out the postquantum theories
that are consistent with experimentally observed results. We explore this
question in the context of epistemics, and ask whether agreement between
observers can serve as a physical principle that must hold for any theory of
the world. Aumann's seminal Agreement Theorem states that two observers (of
classical systems) cannot agree to disagree. We propose an extension of this
theorem to no-signaling settings. In particular, we establish an Agreement
Theorem for observers of quantum systems, while we construct examples of
(postquantum) no-signaling boxes where observers can agree to disagree. The PR
box is an extremal instance of this phenomenon. These results make it plausible
that agreement between observers might be a physical principle, while they also
establish links between the fields of epistemics and quantum information that
seem worthy of further exploration.
Related papers
- The composition rule for quantum systems is not the only possible one [0.0]
We argue that the composition postulate deserves to be experimentally scrutinised independently of the other features of quantum theory.
We formulate a family of operational theories that are solely distinguished from quantum theory by their system-composition rule.
arXiv Detail & Related papers (2024-11-24T19:31:13Z) - Bertlmann's socks from a Viennese perspective [0.0]
A century after its inception, we are presented with a promising interpretive key, intimated by Wheeler as early as 1974.
The interpretative paradoxes of this theory might be resolved if we discern the relationship between logical undecidability and quantum undecidability.
It will be demonstrated how both are intricately linked to an observer/observed relational issue, and how the idiosyncratic behaviours of quantum physics can be reconciled with the normative.
arXiv Detail & Related papers (2023-08-07T06:49:19Z) - Incompatibility of observables, channels and instruments in information
theories [68.8204255655161]
We study the notion of compatibility for tests of an operational probabilistic theory.
We show that a theory admits of incompatible tests if and only if some information cannot be extracted without disturbance.
arXiv Detail & Related papers (2022-04-17T08:44:29Z) - Experimental test of quantum causal influences [0.6291681227094761]
Quantum correlations can violate classical bounds on the causal influence even in scenarios where no violation of a Bell inequality is ever possible.
We experimentally observe this new witness of nonclassicality for the first time.
arXiv Detail & Related papers (2021-08-19T21:47:18Z) - Quantum indistinguishability through exchangeable desirable gambles [69.62715388742298]
Two particles are identical if all their intrinsic properties, such as spin and charge, are the same.
Quantum mechanics is seen as a normative and algorithmic theory guiding an agent to assess her subjective beliefs represented as (coherent) sets of gambles.
We show how sets of exchangeable observables (gambles) may be updated after a measurement and discuss the issue of defining entanglement for indistinguishable particle systems.
arXiv Detail & Related papers (2021-05-10T13:11:59Z) - Quantum Causal Inference in the Presence of Hidden Common Causes: an
Entropic Approach [34.77250498401055]
We put forth a new theoretical framework for merging quantum information science and causal inference by exploiting entropic principles.
We apply our proposed framework to an experimentally relevant scenario of identifying message senders on quantum noisy links.
This approach can lay the foundations of identifying originators of malicious activity on future multi-node quantum networks.
arXiv Detail & Related papers (2021-04-24T22:45:50Z) - Measuring Quantum Superpositions (Or, "It is only the theory which
decides what can be observed.") [0.0]
We argue that the ad hoc introduction of the projection postulate (or measurement rule) can be understood as a necessary requirement coming from a naive empiricist standpoint.
We discuss the general physical conditions for measuring and observing quantum superpositions.
arXiv Detail & Related papers (2020-07-02T14:30:56Z) - Emergence of classical behavior in the early universe [68.8204255655161]
Three notions are often assumed to be essentially equivalent, representing different facets of the same phenomenon.
We analyze them in general Friedmann-Lemaitre- Robertson-Walker space-times through the lens of geometric structures on the classical phase space.
The analysis shows that: (i) inflation does not play an essential role; classical behavior can emerge much more generally; (ii) the three notions are conceptually distinct; classicality can emerge in one sense but not in another.
arXiv Detail & Related papers (2020-04-22T16:38:25Z) - Quantum Mechanical description of Bell's experiment assumes Locality [91.3755431537592]
Bell's experiment description assumes the (Quantum Mechanics-language equivalent of the classical) condition of Locality.
This result is complementary to a recently published one demonstrating that non-Locality is necessary to describe said experiment.
It is concluded that, within the framework of Quantum Mechanics, there is absolutely no reason to believe in the existence of non-Local effects.
arXiv Detail & Related papers (2020-02-27T15:04:08Z) - A strong no-go theorem on the Wigner's friend paradox [0.0]
We prove that if quantum evolution is controllable on the scale of an observer, then one of 'No-Superdeterminism', 'Locality' or 'Absoluteness of Observed Events' must be false.
We show that although the violation of Bell-type inequalities in such scenarios is not in general sufficient to demonstrate the contradiction between those three assumptions, new inequalities can be derived in a theory-independent manner.
arXiv Detail & Related papers (2019-07-12T08:09:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.