Reduced-Order Neural Network Synthesis with Robustness Guarantees
- URL: http://arxiv.org/abs/2102.09284v1
- Date: Thu, 18 Feb 2021 12:03:57 GMT
- Title: Reduced-Order Neural Network Synthesis with Robustness Guarantees
- Authors: Ross Drummond, Mathew C. Turner and Stephen R. Duncan
- Abstract summary: Machine learning algorithms are being adapted to run locally on board, potentially hardware limited, devices to improve user privacy, reduce latency and be more energy efficient.
To address this issue, a method to automatically synthesize reduced-order neural networks (having fewer neurons) approxing the input/output mapping of a larger one is introduced.
Worst-case bounds for this approximation error are obtained and the approach can be applied to a wide variety of neural networks architectures.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In the wake of the explosive growth in smartphones and cyberphysical systems,
there has been an accelerating shift in how data is generated away from
centralised data towards on-device generated data. In response, machine
learning algorithms are being adapted to run locally on board, potentially
hardware limited, devices to improve user privacy, reduce latency and be more
energy efficient. However, our understanding of how these device orientated
algorithms behave and should be trained is still fairly limited. To address
this issue, a method to automatically synthesize reduced-order neural networks
(having fewer neurons) approximating the input/output mapping of a larger one
is introduced. The reduced-order neural network's weights and biases are
generated from a convex semi-definite programme that minimises the worst-case
approximation error with respect to the larger network. Worst-case bounds for
this approximation error are obtained and the approach can be applied to a wide
variety of neural networks architectures. What differentiates the proposed
approach to existing methods for generating small neural networks, e.g.
pruning, is the inclusion of the worst-case approximation error directly within
the training cost function, which should add robustness. Numerical examples
highlight the potential of the proposed approach. The overriding goal of this
paper is to generalise recent results in the robustness analysis of neural
networks to a robust synthesis problem for their weights and biases.
Related papers
- Message Passing Variational Autoregressive Network for Solving Intractable Ising Models [6.261096199903392]
Many deep neural networks have been used to solve Ising models, including autoregressive neural networks, convolutional neural networks, recurrent neural networks, and graph neural networks.
Here we propose a variational autoregressive architecture with a message passing mechanism, which can effectively utilize the interactions between spin variables.
The new network trained under an annealing framework outperforms existing methods in solving several prototypical Ising spin Hamiltonians, especially for larger spin systems at low temperatures.
arXiv Detail & Related papers (2024-04-09T11:27:07Z) - Graph Neural Networks for Learning Equivariant Representations of Neural Networks [55.04145324152541]
We propose to represent neural networks as computational graphs of parameters.
Our approach enables a single model to encode neural computational graphs with diverse architectures.
We showcase the effectiveness of our method on a wide range of tasks, including classification and editing of implicit neural representations.
arXiv Detail & Related papers (2024-03-18T18:01:01Z) - Semantic Strengthening of Neuro-Symbolic Learning [85.6195120593625]
Neuro-symbolic approaches typically resort to fuzzy approximations of a probabilistic objective.
We show how to compute this efficiently for tractable circuits.
We test our approach on three tasks: predicting a minimum-cost path in Warcraft, predicting a minimum-cost perfect matching, and solving Sudoku puzzles.
arXiv Detail & Related papers (2023-02-28T00:04:22Z) - CorrectNet: Robustness Enhancement of Analog In-Memory Computing for
Neural Networks by Error Suppression and Compensation [4.570841222958966]
We propose a framework to enhance the robustness of neural networks under variations and noise.
We show that inference accuracy of neural networks can be recovered from as low as 1.69% under variations and noise.
arXiv Detail & Related papers (2022-11-27T19:13:33Z) - A Kernel-Expanded Stochastic Neural Network [10.837308632004644]
Deep neural network often gets trapped into a local minimum in training.
New kernel-expanded neural network (K-StoNet) model reformulates the network as a latent variable model.
Model can be easily trained using the imputationregularized optimization (IRO) algorithm.
arXiv Detail & Related papers (2022-01-14T06:42:42Z) - SignalNet: A Low Resolution Sinusoid Decomposition and Estimation
Network [79.04274563889548]
We propose SignalNet, a neural network architecture that detects the number of sinusoids and estimates their parameters from quantized in-phase and quadrature samples.
We introduce a worst-case learning threshold for comparing the results of our network relative to the underlying data distributions.
In simulation, we find that our algorithm is always able to surpass the threshold for three-bit data but often cannot exceed the threshold for one-bit data.
arXiv Detail & Related papers (2021-06-10T04:21:20Z) - Artificial Neural Networks generated by Low Discrepancy Sequences [59.51653996175648]
We generate artificial neural networks as random walks on a dense network graph.
Such networks can be trained sparse from scratch, avoiding the expensive procedure of training a dense network and compressing it afterwards.
We demonstrate that the artificial neural networks generated by low discrepancy sequences can achieve an accuracy within reach of their dense counterparts at a much lower computational complexity.
arXiv Detail & Related papers (2021-03-05T08:45:43Z) - Robust error bounds for quantised and pruned neural networks [1.8083503268672914]
Machine learning algorithms are moving towards decentralisation with the data and algorithms stored, and even trained, locally on devices.
The device hardware becomes the main bottleneck for model capability in this set-up, creating a need for slimmed down, more efficient neural networks.
A semi-definite program is introduced to bound the worst-case error caused by pruning or quantising a neural network.
It is hoped that the computed bounds will provide certainty to the performance of these algorithms when deployed on safety-critical systems.
arXiv Detail & Related papers (2020-11-30T22:19:44Z) - Binary Neural Networks: A Survey [126.67799882857656]
The binary neural network serves as a promising technique for deploying deep models on resource-limited devices.
The binarization inevitably causes severe information loss, and even worse, its discontinuity brings difficulty to the optimization of the deep network.
We present a survey of these algorithms, mainly categorized into the native solutions directly conducting binarization, and the optimized ones using techniques like minimizing the quantization error, improving the network loss function, and reducing the gradient error.
arXiv Detail & Related papers (2020-03-31T16:47:20Z) - MSE-Optimal Neural Network Initialization via Layer Fusion [68.72356718879428]
Deep neural networks achieve state-of-the-art performance for a range of classification and inference tasks.
The use of gradient combined nonvolutionity renders learning susceptible to novel problems.
We propose fusing neighboring layers of deeper networks that are trained with random variables.
arXiv Detail & Related papers (2020-01-28T18:25:15Z) - Lossless Compression of Deep Neural Networks [17.753357839478575]
Deep neural networks have been successful in many predictive modeling tasks, such as image and language recognition.
It is challenging to deploy these networks under limited computational resources, such as in mobile devices.
We introduce an algorithm that removes units and layers of a neural network while not changing the output that is produced.
arXiv Detail & Related papers (2020-01-01T15:04:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.