Artificial Neural Networks generated by Low Discrepancy Sequences
- URL: http://arxiv.org/abs/2103.03543v2
- Date: Mon, 27 Nov 2023 08:09:20 GMT
- Title: Artificial Neural Networks generated by Low Discrepancy Sequences
- Authors: Alexander Keller and Matthijs Van keirsbilck
- Abstract summary: We generate artificial neural networks as random walks on a dense network graph.
Such networks can be trained sparse from scratch, avoiding the expensive procedure of training a dense network and compressing it afterwards.
We demonstrate that the artificial neural networks generated by low discrepancy sequences can achieve an accuracy within reach of their dense counterparts at a much lower computational complexity.
- Score: 59.51653996175648
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Artificial neural networks can be represented by paths. Generated as random
walks on a dense network graph, we find that the resulting sparse networks
allow for deterministic initialization and even weights with fixed sign. Such
networks can be trained sparse from scratch, avoiding the expensive procedure
of training a dense network and compressing it afterwards. Although sparse,
weights are accessed as contiguous blocks of memory. In addition, enumerating
the paths using deterministic low discrepancy sequences, for example the Sobol'
sequence, amounts to connecting the layers of neural units by progressive
permutations, which naturally avoids bank conflicts in parallel computer
hardware. We demonstrate that the artificial neural networks generated by low
discrepancy sequences can achieve an accuracy within reach of their dense
counterparts at a much lower computational complexity.
Related papers
- Residual Random Neural Networks [0.0]
Single-layer feedforward neural network with random weights is a recurring motif in the neural networks literature.
We show that one can obtain good classification results even if the number of hidden neurons has the same order of magnitude as the dimensionality of the data samples.
arXiv Detail & Related papers (2024-10-25T22:00:11Z) - Coding schemes in neural networks learning classification tasks [52.22978725954347]
We investigate fully-connected, wide neural networks learning classification tasks.
We show that the networks acquire strong, data-dependent features.
Surprisingly, the nature of the internal representations depends crucially on the neuronal nonlinearity.
arXiv Detail & Related papers (2024-06-24T14:50:05Z) - Semantic Loss Functions for Neuro-Symbolic Structured Prediction [74.18322585177832]
We discuss the semantic loss, which injects knowledge about such structure, defined symbolically, into training.
It is agnostic to the arrangement of the symbols, and depends only on the semantics expressed thereby.
It can be combined with both discriminative and generative neural models.
arXiv Detail & Related papers (2024-05-12T22:18:25Z) - Taming Binarized Neural Networks and Mixed-Integer Programs [2.7624021966289596]
We show that binarized neural networks admit a tame representation.
This makes it possible to use the framework of Bolte et al. for implicit differentiation.
This approach could also be used for a broader class of mixed-integer programs.
arXiv Detail & Related papers (2023-10-05T21:04:16Z) - SPFQ: A Stochastic Algorithm and Its Error Analysis for Neural Network
Quantization [5.982922468400901]
We show that it is possible to achieve error bounds equivalent to that obtained in the order of the weights of a neural layer.
We prove that it is possible to achieve full-network bounds under an infinite alphabet and minimal assumptions on the input data.
arXiv Detail & Related papers (2023-09-20T00:35:16Z) - Robust Training and Verification of Implicit Neural Networks: A
Non-Euclidean Contractive Approach [64.23331120621118]
This paper proposes a theoretical and computational framework for training and robustness verification of implicit neural networks.
We introduce a related embedded network and show that the embedded network can be used to provide an $ell_infty$-norm box over-approximation of the reachable sets of the original network.
We apply our algorithms to train implicit neural networks on the MNIST dataset and compare the robustness of our models with the models trained via existing approaches in the literature.
arXiv Detail & Related papers (2022-08-08T03:13:24Z) - The Separation Capacity of Random Neural Networks [78.25060223808936]
We show that a sufficiently large two-layer ReLU-network with standard Gaussian weights and uniformly distributed biases can solve this problem with high probability.
We quantify the relevant structure of the data in terms of a novel notion of mutual complexity.
arXiv Detail & Related papers (2021-07-31T10:25:26Z) - Reduced-Order Neural Network Synthesis with Robustness Guarantees [0.0]
Machine learning algorithms are being adapted to run locally on board, potentially hardware limited, devices to improve user privacy, reduce latency and be more energy efficient.
To address this issue, a method to automatically synthesize reduced-order neural networks (having fewer neurons) approxing the input/output mapping of a larger one is introduced.
Worst-case bounds for this approximation error are obtained and the approach can be applied to a wide variety of neural networks architectures.
arXiv Detail & Related papers (2021-02-18T12:03:57Z) - ESPN: Extremely Sparse Pruned Networks [50.436905934791035]
We show that a simple iterative mask discovery method can achieve state-of-the-art compression of very deep networks.
Our algorithm represents a hybrid approach between single shot network pruning methods and Lottery-Ticket type approaches.
arXiv Detail & Related papers (2020-06-28T23:09:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.