Ethics as a service: a pragmatic operationalisation of AI Ethics
- URL: http://arxiv.org/abs/2102.09364v1
- Date: Thu, 11 Feb 2021 21:29:25 GMT
- Title: Ethics as a service: a pragmatic operationalisation of AI Ethics
- Authors: Jessica Morley, Anat Elhalal, Francesca Garcia, Libby Kinsey, Jakob
Mokander, Luciano Floridi
- Abstract summary: gap exists between theory of AI ethics principles and the practical design of AI systems.
This is the question we seek to address here by exploring why principles and technical translational tools are still needed even if they are limited.
- Score: 1.1083289076967895
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: As the range of potential uses for Artificial Intelligence (AI), in
particular machine learning (ML), has increased, so has awareness of the
associated ethical issues. This increased awareness has led to the realisation
that existing legislation and regulation provides insufficient protection to
individuals, groups, society, and the environment from AI harms. In response to
this realisation, there has been a proliferation of principle-based ethics
codes, guidelines and frameworks. However, it has become increasingly clear
that a significant gap exists between the theory of AI ethics principles and
the practical design of AI systems. In previous work, we analysed whether it is
possible to close this gap between the what and the how of AI ethics through
the use of tools and methods designed to help AI developers, engineers, and
designers translate principles into practice. We concluded that this method of
closure is currently ineffective as almost all existing translational tools and
methods are either too flexible (and thus vulnerable to ethics washing) or too
strict (unresponsive to context). This raised the question: if, even with
technical guidance, AI ethics is challenging to embed in the process of
algorithmic design, is the entire pro-ethical design endeavour rendered futile?
And, if no, then how can AI ethics be made useful for AI practitioners? This is
the question we seek to address here by exploring why principles and technical
translational tools are still needed even if they are limited, and how these
limitations can be potentially overcome by providing theoretical grounding of a
concept that has been termed Ethics as a Service.
Related papers
- Using AI Alignment Theory to understand the potential pitfalls of regulatory frameworks [55.2480439325792]
This paper critically examines the European Union's Artificial Intelligence Act (EU AI Act)
Uses insights from Alignment Theory (AT) research, which focuses on the potential pitfalls of technical alignment in Artificial Intelligence.
As we apply these concepts to the EU AI Act, we uncover potential vulnerabilities and areas for improvement in the regulation.
arXiv Detail & Related papers (2024-10-10T17:38:38Z) - Crossing the principle-practice gap in AI ethics with ethical problem-solving [0.0]
How to bridge the principle-practice gap separating ethical discourse from the technical side of AI development remains an open problem.
EPS is a methodology promoting responsible, human-centric, and value-oriented AI development.
We utilize EPS as a blueprint to propose the implementation of Ethics as a Service Platform.
arXiv Detail & Related papers (2024-04-16T14:35:13Z) - Fairness in Agreement With European Values: An Interdisciplinary
Perspective on AI Regulation [61.77881142275982]
This interdisciplinary position paper considers various concerns surrounding fairness and discrimination in AI, and discusses how AI regulations address them.
We first look at AI and fairness through the lenses of law, (AI) industry, sociotechnology, and (moral) philosophy, and present various perspectives.
We identify and propose the roles AI Regulation should take to make the endeavor of the AI Act a success in terms of AI fairness concerns.
arXiv Detail & Related papers (2022-06-08T12:32:08Z) - Metaethical Perspectives on 'Benchmarking' AI Ethics [81.65697003067841]
Benchmarks are seen as the cornerstone for measuring technical progress in Artificial Intelligence (AI) research.
An increasingly prominent research area in AI is ethics, which currently has no set of benchmarks nor commonly accepted way for measuring the 'ethicality' of an AI system.
We argue that it makes more sense to talk about 'values' rather than 'ethics' when considering the possible actions of present and future AI systems.
arXiv Detail & Related papers (2022-04-11T14:36:39Z) - From the Ground Truth Up: Doing AI Ethics from Practice to Principles [0.0]
Recent AI ethics has focused on applying abstract principles downward to practice.
This paper moves in the other direction.
Ethical insights are generated from the lived experiences of AI-designers working on tangible human problems.
arXiv Detail & Related papers (2022-01-05T15:33:33Z) - A Deployment Model to Extend Ethically Aligned AI Implementation Method
ECCOLA [5.28595286827031]
This study aims to extend ECCOLA with a deployment model to drive the adoption of ECCOLA.
The model includes simple metrics to facilitate the communication of ethical gaps or outcomes of ethical AI development.
arXiv Detail & Related papers (2021-10-12T12:22:34Z) - Building Bridges: Generative Artworks to Explore AI Ethics [56.058588908294446]
In recent years, there has been an increased emphasis on understanding and mitigating adverse impacts of artificial intelligence (AI) technologies on society.
A significant challenge in the design of ethical AI systems is that there are multiple stakeholders in the AI pipeline, each with their own set of constraints and interests.
This position paper outlines some potential ways in which generative artworks can play this role by serving as accessible and powerful educational tools.
arXiv Detail & Related papers (2021-06-25T22:31:55Z) - An interdisciplinary conceptual study of Artificial Intelligence (AI)
for helping benefit-risk assessment practices: Towards a comprehensive
qualification matrix of AI programs and devices (pre-print 2020) [55.41644538483948]
This paper proposes a comprehensive analysis of existing concepts coming from different disciplines tackling the notion of intelligence.
The aim is to identify shared notions or discrepancies to consider for qualifying AI systems.
arXiv Detail & Related papers (2021-05-07T12:01:31Z) - AI virtues -- The missing link in putting AI ethics into practice [0.0]
The paper defines four basic AI virtues, namely justice, honesty, responsibility and care.
It defines two second-order AI virtues, prudence and fortitude, that bolster achieving the basic virtues.
arXiv Detail & Related papers (2020-11-25T14:14:47Z) - ECCOLA -- a Method for Implementing Ethically Aligned AI Systems [11.31664099885664]
We present a method for implementing AI ethics into practice.
The method, ECCOLA, has been iteratively developed using a cyclical action design research approach.
arXiv Detail & Related papers (2020-04-17T17:57:07Z) - On the Morality of Artificial Intelligence [154.69452301122175]
We propose conceptual and practical principles and guidelines for Machine Learning research and deployment.
We insist on concrete actions that can be taken by practitioners to pursue a more ethical and moral practice of ML aimed at using AI for social good.
arXiv Detail & Related papers (2019-12-26T23:06:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.