Enhanced Magnetic Resonance Image Synthesis with Contrast-Aware
Generative Adversarial Networks
- URL: http://arxiv.org/abs/2102.09386v1
- Date: Wed, 17 Feb 2021 11:39:36 GMT
- Title: Enhanced Magnetic Resonance Image Synthesis with Contrast-Aware
Generative Adversarial Networks
- Authors: Jonas Denck, Jens Guehring, Andreas Maier, Eva Rothgang
- Abstract summary: We trained a generative adversarial network (GAN) to generate synthetic MR knee images conditioned on various acquisition parameters.
In a Turing test, two experts mislabeled 40.5% of real and synthetic MR images, demonstrating that the image quality of the generated synthetic and real MR images is comparable.
- Score: 5.3580471186206005
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A Magnetic Resonance Imaging (MRI) exam typically consists of the acquisition
of multiple MR pulse sequences, which are required for a reliable diagnosis.
Each sequence can be parameterized through multiple acquisition parameters
affecting MR image contrast, signal-to-noise ratio, resolution, or scan time.
With the rise of generative deep learning models, approaches for the synthesis
of MR images are developed to either synthesize additional MR contrasts,
generate synthetic data, or augment existing data for AI training. However,
current generative approaches for the synthesis of MR images are only trained
on images with a specific set of acquisition parameter values, limiting the
clinical value of these methods as various sets of acquisition parameter
settings are used in clinical practice. Therefore, we trained a generative
adversarial network (GAN) to generate synthetic MR knee images conditioned on
various acquisition parameters (repetition time, echo time, image orientation).
This approach enables us to synthesize MR images with adjustable image
contrast. In a visual Turing test, two experts mislabeled 40.5% of real and
synthetic MR images, demonstrating that the image quality of the generated
synthetic and real MR images is comparable. This work can support radiologists
and technologists during the parameterization of MR sequences by previewing the
yielded MR contrast, can serve as a valuable tool for radiology training, and
can be used for customized data generation to support AI training.
Related papers
- Towards General Text-guided Image Synthesis for Customized Multimodal Brain MRI Generation [51.28453192441364]
Multimodal brain magnetic resonance (MR) imaging is indispensable in neuroscience and neurology.
Current MR image synthesis approaches are typically trained on independent datasets for specific tasks.
We present TUMSyn, a Text-guided Universal MR image Synthesis model, which can flexibly generate brain MR images.
arXiv Detail & Related papers (2024-09-25T11:14:47Z) - NeRF Solves Undersampled MRI Reconstruction [1.3597551064547502]
This article presents a novel undersampled magnetic resonance imaging (MRI) technique that leverages the concept of Neural Radiance Field (NeRF)
With radial undersampling, the corresponding imaging problem can be reformulated into an image modeling task from sparse-view rendered data.
A multi-layer perceptron, which is designed to output an image intensity from a spatial coordinate, learns the MR physics-driven rendering relation between given measurement data and desired image.
arXiv Detail & Related papers (2024-02-20T18:37:42Z) - Enhanced Synthetic MRI Generation from CT Scans Using CycleGAN with
Feature Extraction [3.2088888904556123]
We propose an approach for enhanced monomodal registration using synthetic MRI images from CT scans.
Our methodology shows promising results, outperforming several state-of-the-art methods.
arXiv Detail & Related papers (2023-10-31T16:39:56Z) - On Sensitivity and Robustness of Normalization Schemes to Input
Distribution Shifts in Automatic MR Image Diagnosis [58.634791552376235]
Deep Learning (DL) models have achieved state-of-the-art performance in diagnosing multiple diseases using reconstructed images as input.
DL models are sensitive to varying artifacts as it leads to changes in the input data distribution between the training and testing phases.
We propose to use other normalization techniques, such as Group Normalization and Layer Normalization, to inject robustness into model performance against varying image artifacts.
arXiv Detail & Related papers (2023-06-23T03:09:03Z) - OADAT: Experimental and Synthetic Clinical Optoacoustic Data for
Standardized Image Processing [62.993663757843464]
Optoacoustic (OA) imaging is based on excitation of biological tissues with nanosecond-duration laser pulses followed by detection of ultrasound waves generated via light-absorption-mediated thermoelastic expansion.
OA imaging features a powerful combination between rich optical contrast and high resolution in deep tissues.
No standardized datasets generated with different types of experimental set-up and associated processing methods are available to facilitate advances in broader applications of OA in clinical settings.
arXiv Detail & Related papers (2022-06-17T08:11:26Z) - Deep Learning-Based MR Image Re-parameterization [0.0]
We propose a novel deep learning (DL) based convolutional model for MRI re- parameterization.
Based on our preliminary results, DL-based techniques hold the potential to learn the non-linearities that govern the re- parameterization.
arXiv Detail & Related papers (2022-06-11T12:39:37Z) - Fast T2w/FLAIR MRI Acquisition by Optimal Sampling of Information
Complementary to Pre-acquired T1w MRI [52.656075914042155]
We propose an iterative framework to optimize the under-sampling pattern for MRI acquisition of another modality.
We have demonstrated superior performance of our learned under-sampling patterns on a public dataset.
arXiv Detail & Related papers (2021-11-11T04:04:48Z) - Adaptive Gradient Balancing for UndersampledMRI Reconstruction and
Image-to-Image Translation [60.663499381212425]
We enhance the image quality by using a Wasserstein Generative Adversarial Network combined with a novel Adaptive Gradient Balancing technique.
In MRI, our method minimizes artifacts, while maintaining a high-quality reconstruction that produces sharper images than other techniques.
arXiv Detail & Related papers (2021-04-05T13:05:22Z) - MR-Contrast-Aware Image-to-Image Translations with Generative
Adversarial Networks [5.3580471186206005]
We train an image-to-image generative adversarial network conditioned on the MR acquisition parameters repetition time and echo time.
Our approach yields a peak signal-to-noise ratio and structural similarity of 24.48 and 0.66, surpassing the pix2pix benchmark model significantly.
arXiv Detail & Related papers (2021-04-03T17:05:13Z) - Multi-institutional Collaborations for Improving Deep Learning-based
Magnetic Resonance Image Reconstruction Using Federated Learning [62.17532253489087]
Deep learning methods have been shown to produce superior performance on MR image reconstruction.
These methods require large amounts of data which is difficult to collect and share due to the high cost of acquisition and medical data privacy regulations.
We propose a federated learning (FL) based solution in which we take advantage of the MR data available at different institutions while preserving patients' privacy.
arXiv Detail & Related papers (2021-03-03T03:04:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.