Enhanced Synthetic MRI Generation from CT Scans Using CycleGAN with
Feature Extraction
- URL: http://arxiv.org/abs/2310.20604v2
- Date: Tue, 28 Nov 2023 08:29:18 GMT
- Title: Enhanced Synthetic MRI Generation from CT Scans Using CycleGAN with
Feature Extraction
- Authors: Saba Nikbakhsh, Lachin Naghashyar, Morteza Valizadeh, Mehdi Chehel
Amirani
- Abstract summary: We propose an approach for enhanced monomodal registration using synthetic MRI images from CT scans.
Our methodology shows promising results, outperforming several state-of-the-art methods.
- Score: 3.2088888904556123
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the field of radiotherapy, accurate imaging and image registration are of
utmost importance for precise treatment planning. Magnetic Resonance Imaging
(MRI) offers detailed imaging without being invasive and excels in soft-tissue
contrast, making it a preferred modality for radiotherapy planning. However,
the high cost of MRI, longer acquisition time, and certain health
considerations for patients pose challenges. Conversely, Computed Tomography
(CT) scans offer a quicker and less expensive imaging solution. To bridge these
modalities and address multimodal alignment challenges, we introduce an
approach for enhanced monomodal registration using synthetic MRI images.
Utilizing unpaired data, this paper proposes a novel method to produce these
synthetic MRI images from CT scans, leveraging CycleGANs and feature
extractors. By building upon the foundational work on Cycle-Consistent
Adversarial Networks and incorporating advancements from related literature,
our methodology shows promising results, outperforming several state-of-the-art
methods. The efficacy of our approach is validated by multiple comparison
metrics.
Related papers
- Towards General Text-guided Image Synthesis for Customized Multimodal Brain MRI Generation [51.28453192441364]
Multimodal brain magnetic resonance (MR) imaging is indispensable in neuroscience and neurology.
Current MR image synthesis approaches are typically trained on independent datasets for specific tasks.
We present TUMSyn, a Text-guided Universal MR image Synthesis model, which can flexibly generate brain MR images.
arXiv Detail & Related papers (2024-09-25T11:14:47Z) - Leveraging Multimodal CycleGAN for the Generation of Anatomically Accurate Synthetic CT Scans from MRIs [1.779948689352186]
We analyse the capabilities of different configurations of Deep Learning models to generate synthetic CT scans from MRI.
Several CycleGAN models were trained unsupervised to generate CT scans from different MRI modalities with and without contrast agents.
The results show how, depending on the input modalities, the models can have very different performances.
arXiv Detail & Related papers (2024-07-15T16:38:59Z) - Multimodal Deformable Image Registration for Long-COVID Analysis Based on Progressive Alignment and Multi-perspective Loss [0.0]
Long COVID is characterized by persistent symptoms, particularly pulmonary impairment.
Integrating functional data from XeMRI with structural data from CT is crucial for comprehensive analysis and effective treatment strategies.
We propose an end-to-end multimodal deformable image registration method that achieves superior performance for aligning long-COVID lung CT and proton density MRI data.
arXiv Detail & Related papers (2024-06-21T14:19:18Z) - Joint Edge Optimization Deep Unfolding Network for Accelerated MRI Reconstruction [3.9681863841849623]
We build a joint edge optimization model that not only incorporates individual regularizers specific to both the MR image and the edges, but also enforces a co-regularizer to effectively establish a stronger correlation between them.
Specifically, the edge information is defined through a non-edge probability map to guide the image reconstruction during the optimization process.
Meanwhile, the regularizers pertaining to images and edges are incorporated into a deep unfolding network to automatically learn their respective inherent a-priori information.
arXiv Detail & Related papers (2024-05-09T05:51:33Z) - Style transfer between Microscopy and Magnetic Resonance Imaging via
Generative Adversarial Network in small sample size settings [49.84018914962972]
Cross-modal augmentation of Magnetic Resonance Imaging (MRI) and microscopic imaging based on the same tissue samples is promising.
We tested a method for generating microscopic histological images from MRI scans of the corpus callosum using conditional generative adversarial network (cGAN) architecture.
arXiv Detail & Related papers (2023-10-16T13:58:53Z) - Model-Guided Multi-Contrast Deep Unfolding Network for MRI
Super-resolution Reconstruction [68.80715727288514]
We show how to unfold an iterative MGDUN algorithm into a novel model-guided deep unfolding network by taking the MRI observation matrix.
In this paper, we propose a novel Model-Guided interpretable Deep Unfolding Network (MGDUN) for medical image SR reconstruction.
arXiv Detail & Related papers (2022-09-15T03:58:30Z) - Multi-modal Aggregation Network for Fast MR Imaging [85.25000133194762]
We propose a novel Multi-modal Aggregation Network, named MANet, which is capable of discovering complementary representations from a fully sampled auxiliary modality.
In our MANet, the representations from the fully sampled auxiliary and undersampled target modalities are learned independently through a specific network.
Our MANet follows a hybrid domain learning framework, which allows it to simultaneously recover the frequency signal in the $k$-space domain.
arXiv Detail & Related papers (2021-10-15T13:16:59Z) - High-Resolution Pelvic MRI Reconstruction Using a Generative Adversarial
Network with Attention and Cyclic Loss [3.4358954898228604]
Super-resolution methods have shown excellent performance in accelerating MRI.
In some circumstances, it is difficult to obtain high-resolution images even with prolonged scan time.
We proposed a novel super-resolution method that uses a generative adversarial network (GAN) with cyclic loss and attention mechanism.
arXiv Detail & Related papers (2021-07-21T10:07:22Z) - Adaptive Gradient Balancing for UndersampledMRI Reconstruction and
Image-to-Image Translation [60.663499381212425]
We enhance the image quality by using a Wasserstein Generative Adversarial Network combined with a novel Adaptive Gradient Balancing technique.
In MRI, our method minimizes artifacts, while maintaining a high-quality reconstruction that produces sharper images than other techniques.
arXiv Detail & Related papers (2021-04-05T13:05:22Z) - ShuffleUNet: Super resolution of diffusion-weighted MRIs using deep
learning [47.68307909984442]
Single Image Super-Resolution (SISR) is a technique aimed to obtain high-resolution (HR) details from one single low-resolution input image.
Deep learning extracts prior knowledge from big datasets and produces superior MRI images from the low-resolution counterparts.
arXiv Detail & Related papers (2021-02-25T14:52:23Z) - Dual-cycle Constrained Bijective VAE-GAN For Tagged-to-Cine Magnetic
Resonance Image Synthesis [11.697141493937021]
We propose a novel VAE-GAN approach to carry out tagged-to-cine MR image synthesis.
Our framework has been trained, validated, and tested using 1,768, 416, and 1,560 subject-independent paired slices of tagged and cine MRI.
arXiv Detail & Related papers (2021-01-14T03:27:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.