Adaptive Rational Activations to Boost Deep Reinforcement Learning
- URL: http://arxiv.org/abs/2102.09407v5
- Date: Sat, 16 Mar 2024 12:40:45 GMT
- Title: Adaptive Rational Activations to Boost Deep Reinforcement Learning
- Authors: Quentin Delfosse, Patrick Schramowski, Martin Mundt, Alejandro Molina, Kristian Kersting,
- Abstract summary: We motivate why rationals are suitable for adaptable activation functions and why their inclusion into neural networks is crucial.
We demonstrate that equipping popular algorithms with (recurrent-)rational activations leads to consistent improvements on Atari games.
- Score: 68.10769262901003
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Latest insights from biology show that intelligence not only emerges from the connections between neurons but that individual neurons shoulder more computational responsibility than previously anticipated. This perspective should be critical in the context of constantly changing distinct reinforcement learning environments, yet current approaches still primarily employ static activation functions. In this work, we motivate why rationals are suitable for adaptable activation functions and why their inclusion into neural networks is crucial. Inspired by recurrence in residual networks, we derive a condition under which rational units are closed under residual connections and formulate a naturally regularised version: the recurrent-rational. We demonstrate that equipping popular algorithms with (recurrent-)rational activations leads to consistent improvements on Atari games, especially turning simple DQN into a solid approach, competitive to DDQN and Rainbow.
Related papers
- Artificial Kuramoto Oscillatory Neurons [65.16453738828672]
We introduce Artificial Kuramotoy Neurons (AKOrN) as a dynamical alternative to threshold units.
We show that this idea provides performance improvements across a wide spectrum of tasks.
We believe that these empirical results show the importance of our assumptions at the most basic neuronal level of neural representation.
arXiv Detail & Related papers (2024-10-17T17:47:54Z) - Contrastive Learning in Memristor-based Neuromorphic Systems [55.11642177631929]
Spiking neural networks have become an important family of neuron-based models that sidestep many of the key limitations facing modern-day backpropagation-trained deep networks.
In this work, we design and investigate a proof-of-concept instantiation of contrastive-signal-dependent plasticity (CSDP), a neuromorphic form of forward-forward-based, backpropagation-free learning.
arXiv Detail & Related papers (2024-09-17T04:48:45Z) - Fast gradient-free activation maximization for neurons in spiking neural networks [5.805438104063613]
We present a framework with an efficient design for such a loop.
We track changes in the optimal stimuli for artificial neurons during training.
This formation of refined optimal stimuli is associated with an increase in classification accuracy.
arXiv Detail & Related papers (2023-12-28T18:30:13Z) - Leveraging Low-Rank and Sparse Recurrent Connectivity for Robust
Closed-Loop Control [63.310780486820796]
We show how a parameterization of recurrent connectivity influences robustness in closed-loop settings.
We find that closed-form continuous-time neural networks (CfCs) with fewer parameters can outperform their full-rank, fully-connected counterparts.
arXiv Detail & Related papers (2023-10-05T21:44:18Z) - Decorrelating neurons using persistence [29.25969187808722]
We present two regularisation terms computed from the weights of a minimum spanning tree of a clique.
We demonstrate that naive minimisation of all correlations between neurons obtains lower accuracies than our regularisation terms.
We include a proof of differentiability of our regularisers, thus developing the first effective topological persistence-based regularisation terms.
arXiv Detail & Related papers (2023-08-09T11:09:14Z) - Artificial Neuronal Ensembles with Learned Context Dependent Gating [0.0]
We introduce Learned Context Dependent Gating (LXDG), a method to flexibly allocate and recall artificial neuronal ensembles'
Activities in the hidden layers of the network are modulated by gates, which are dynamically produced during training.
We demonstrate the ability of this method to alleviate catastrophic forgetting on continual learning benchmarks.
arXiv Detail & Related papers (2023-01-17T20:52:48Z) - Spiking neural network for nonlinear regression [68.8204255655161]
Spiking neural networks carry the potential for a massive reduction in memory and energy consumption.
They introduce temporal and neuronal sparsity, which can be exploited by next-generation neuromorphic hardware.
A framework for regression using spiking neural networks is proposed.
arXiv Detail & Related papers (2022-10-06T13:04:45Z) - Modeling Implicit Bias with Fuzzy Cognitive Maps [0.0]
This paper presents a Fuzzy Cognitive Map model to quantify implicit bias in structured datasets.
We introduce a new reasoning mechanism equipped with a normalization-like transfer function that prevents neurons from saturating.
arXiv Detail & Related papers (2021-12-23T17:04:12Z) - And/or trade-off in artificial neurons: impact on adversarial robustness [91.3755431537592]
Presence of sufficient number of OR-like neurons in a network can lead to classification brittleness and increased vulnerability to adversarial attacks.
We define AND-like neurons and propose measures to increase their proportion in the network.
Experimental results on the MNIST dataset suggest that our approach holds promise as a direction for further exploration.
arXiv Detail & Related papers (2021-02-15T08:19:05Z) - Rational neural networks [3.4376560669160394]
We consider neural networks with rational activation functions.
We prove that rational neural networks approximate smooth functions more efficiently than ReLU networks with exponentially smaller depth.
arXiv Detail & Related papers (2020-04-04T10:36:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.