A Machine Learning model of the combination of normalized SD1 and SD2
indexes from 24h-Heart Rate Variability as a predictor of myocardial
infarction
- URL: http://arxiv.org/abs/2102.09410v1
- Date: Thu, 18 Feb 2021 14:57:49 GMT
- Title: A Machine Learning model of the combination of normalized SD1 and SD2
indexes from 24h-Heart Rate Variability as a predictor of myocardial
infarction
- Authors: Antonio Carlos Silva-Filho, Sara Raquel Dutra-Macedo, Adeilson Serra
Mendes Vieira and Cristiano Mostarda
- Abstract summary: We used the most common ML algorithms for accuracy comparison with a setting of 10-fold cross-validation.
The main findings of this study show that the combination of SD1nu + SD2nu has greater predictive power for MI in comparison to other HRV indexes.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Aim: to evaluate the ability of the nonlinear 24-HRV as a predictor of MI
using Machine Learning Methods: The sample was composed of 218 patients divided
into two groups (Healthy, n=128; MI n=90). The sample dataset is part of the
Telemetric and Holter Electrocardiogram Warehouse (THEW) database, from the
University of Rochester Medical Center. We used the most common ML algorithms
for accuracy comparison with a setting of 10-fold cross-validation (briefly,
Linear Regression, Linear Discriminant Analysis, k-Nearest Neighbour, Random
Forest, Supporting Vector Machine, Na\"ive Bayes, C 5.0 and Stochastic Gradient
Boosting). Results: The main findings of this study show that the combination
of SD1nu + SD2nu has greater predictive power for MI in comparison to other HRV
indexes. Conclusion: The ML model using nonlinear HRV indexes showed to be more
effective than the linear domain, evidenced through the application of ML,
represented by a good precision of the Stochastic Gradient Boosting model.
Keywords: heart rate variability, machine learning, nonlinear domain,
cardiovascular disease
Related papers
- Improving Machine Learning Based Sepsis Diagnosis Using Heart Rate Variability [0.0]
This study aims to use heart rate variability (HRV) features to develop an effective predictive model for sepsis detection.
A neural network model is trained on the HRV features, achieving an F1 score of 0.805, a precision of 0.851, and a recall of 0.763.
arXiv Detail & Related papers (2024-08-01T01:47:29Z) - A Compact LSTM-SVM Fusion Model for Long-Duration Cardiovascular
Diseases Detection [0.0]
Globally, cardiovascular diseases (CVDs) are the leading cause of mortality, accounting for an estimated 17.9 million deaths annually.
One critical clinical objective is the early detection of CVDs using electrocardiogram (ECG) data.
Recent advancements based on machine learning and deep learning have achieved great progress in this domain.
arXiv Detail & Related papers (2023-11-20T10:57:11Z) - Benchmarking Machine Learning Robustness in Covid-19 Genome Sequence
Classification [109.81283748940696]
We introduce several ways to perturb SARS-CoV-2 genome sequences to mimic the error profiles of common sequencing platforms such as Illumina and PacBio.
We show that some simulation-based approaches are more robust (and accurate) than others for specific embedding methods to certain adversarial attacks to the input sequences.
arXiv Detail & Related papers (2022-07-18T19:16:56Z) - StRegA: Unsupervised Anomaly Detection in Brain MRIs using a Compact
Context-encoding Variational Autoencoder [48.2010192865749]
Unsupervised anomaly detection (UAD) can learn a data distribution from an unlabelled dataset of healthy subjects and then be applied to detect out of distribution samples.
This research proposes a compact version of the "context-encoding" VAE (ceVAE) model, combined with pre and post-processing steps, creating a UAD pipeline (StRegA)
The proposed pipeline achieved a Dice score of 0.642$pm$0.101 while detecting tumours in T2w images of the BraTS dataset and 0.859$pm$0.112 while detecting artificially induced anomalies.
arXiv Detail & Related papers (2022-01-31T14:27:35Z) - Identifying Ventricular Arrhythmias and Their Predictors by Applying
Machine Learning Methods to Electronic Health Records in Patients With
Hypertrophic Cardiomyopathy(HCM-VAr-Risk Model) [0.3811495093928132]
This is the first application of machine learning for identifying hypertrophic cardiomyopathy patients with ventricular arrhythmias (VAr) using clinical attributes.
We evaluated 93 clinical variables, of which 22 proved predictive of VAr.
Our method identified 12 new predictors of VAr, in addition to 10 established SCD predictors.
arXiv Detail & Related papers (2021-09-19T20:11:07Z) - A multi-stage machine learning model on diagnosis of esophageal
manometry [50.591267188664666]
The framework includes deep-learning models at the swallow-level stage and feature-based machine learning models at the study-level stage.
This is the first artificial-intelligence-style model to automatically predict CC diagnosis of HRM study from raw multi-swallow data.
arXiv Detail & Related papers (2021-06-25T20:09:23Z) - Bootstrapping Your Own Positive Sample: Contrastive Learning With
Electronic Health Record Data [62.29031007761901]
This paper proposes a novel contrastive regularized clinical classification model.
We introduce two unique positive sampling strategies specifically tailored for EHR data.
Our framework yields highly competitive experimental results in predicting the mortality risk on real-world COVID-19 EHR data.
arXiv Detail & Related papers (2021-04-07T06:02:04Z) - A proof of concept study for machine learning application to stenosis
detection [0.0]
A virtual patient database (VPD) is created using one-dimensional pulse wave propagation model of haemodynamics.
Four different machine learning (ML) methods are used to train and test a series of classifiers.
arXiv Detail & Related papers (2021-02-11T19:39:33Z) - CovidDeep: SARS-CoV-2/COVID-19 Test Based on Wearable Medical Sensors
and Efficient Neural Networks [51.589769497681175]
The novel coronavirus (SARS-CoV-2) has led to a pandemic.
The current testing regime based on Reverse Transcription-Polymerase Chain Reaction for SARS-CoV-2 has been unable to keep up with testing demands.
We propose a framework called CovidDeep that combines efficient DNNs with commercially available WMSs for pervasive testing of the virus.
arXiv Detail & Related papers (2020-07-20T21:47:28Z) - Segmentation of the Myocardium on Late-Gadolinium Enhanced MRI based on
2.5 D Residual Squeeze and Excitation Deep Learning Model [55.09533240649176]
The aim of this work is to develop an accurate automatic segmentation method based on deep learning models for the myocardial borders on LGE-MRI.
A total number of 320 exams (with a mean number of 6 slices per exam) were used for training and 28 exams used for testing.
The performance analysis of the proposed ensemble model in the basal and middle slices was similar as compared to intra-observer study and slightly lower at apical slices.
arXiv Detail & Related papers (2020-05-27T20:44:38Z) - CNN-CASS: CNN for Classification of Coronary Artery Stenosis Score in
MPR Images [0.0]
We develop an automated model to identify stenosis severity in MPR images.
The model predicts one of three classes: 'no stenosis' for normal, 'non-significant' - 1-50% of stenosis detected,'significant' - more than 50% of stenosis.
For stenosis score classification, the method shows improved performance comparing to previous works, achieving 80% accuracy on the patient level.
arXiv Detail & Related papers (2020-01-23T15:20:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.