rECGnition_v2.0: Self-Attentive Canonical Fusion of ECG and Patient Data using deep learning for effective Cardiac Diagnostics
- URL: http://arxiv.org/abs/2502.16255v1
- Date: Sat, 22 Feb 2025 15:16:46 GMT
- Title: rECGnition_v2.0: Self-Attentive Canonical Fusion of ECG and Patient Data using deep learning for effective Cardiac Diagnostics
- Authors: Shreya Srivastava, Durgesh Kumar, Ram Jiwari, Sandeep Seth, Deepak Sharma,
- Abstract summary: This study uses MIT-BIH Arrhythmia dataset to evaluate the efficiency of rECGnition_v2.0 for various classes of arrhythmias.<n>The compact architectural footprint of the rECGnition_v2.0, characterized by its lesser trainable parameters, unfurled several advantages including interpretability and scalability.
- Score: 0.56337958460022
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The variability in ECG readings influenced by individual patient characteristics has posed a considerable challenge to adopting automated ECG analysis in clinical settings. A novel feature fusion technique termed SACC (Self Attentive Canonical Correlation) was proposed to address this. This technique is combined with DPN (Dual Pathway Network) and depth-wise separable convolution to create a robust, interpretable, and fast end-to-end arrhythmia classification model named rECGnition_v2.0 (robust ECG abnormality detection). This study uses MIT-BIH, INCARTDB and EDB dataset to evaluate the efficiency of rECGnition_v2.0 for various classes of arrhythmias. To investigate the influence of constituting model components, various ablation studies were performed, i.e. simple concatenation, CCA and proposed SACC were compared, while the importance of global and local ECG features were tested using DPN rECGnition_v2.0 model and vice versa. It was also benchmarked with state-of-the-art CNN models for overall accuracy vs model parameters, FLOPs, memory requirements, and prediction time. Furthermore, the inner working of the model was interpreted by comparing the activation locations in ECG before and after the SACC layer. rECGnition_v2.0 showed a remarkable accuracy of 98.07% and an F1-score of 98.05% for classifying ten distinct classes of arrhythmia with just 82.7M FLOPs per sample, thereby going beyond the performance metrics of current state-of-the-art (SOTA) models by utilizing MIT-BIH Arrhythmia dataset. Similarly, on INCARTDB and EDB datasets, excellent F1-scores of 98.01% and 96.21% respectively was achieved for AAMI classification. The compact architectural footprint of the rECGnition_v2.0, characterized by its lesser trainable parameters and diminished computational demands, unfurled several advantages including interpretability and scalability.
Related papers
- BioSerenity-E1: a self-supervised EEG model for medical applications [0.0]
BioSerenity-E1 is a family of self-supervised foundation models for clinical EEG applications.
It combines spectral tokenization with masked prediction to achieve state-of-the-art performance across relevant diagnostic tasks.
arXiv Detail & Related papers (2025-03-13T13:42:46Z) - Fusion of ECG Foundation Model Embeddings to Improve Early Detection of Acute Coronary Syndromes [5.723893680574976]
This study explores the use of ECG foundation models, specifically ST-MEM and ECG-FM, to enhance ACS risk assessment.
We evaluate the performance of these models individually and through a fusion approach, where their embeddings are combined for enhanced prediction.
arXiv Detail & Related papers (2025-02-17T04:50:56Z) - Finetuning and Quantization of EEG-Based Foundational BioSignal Models on ECG and PPG Data for Blood Pressure Estimation [53.2981100111204]
Photoplethysmography and electrocardiography can potentially enable continuous blood pressure (BP) monitoring.
Yet accurate and robust machine learning (ML) models remains challenging due to variability in data quality and patient-specific factors.
In this work, we investigate whether a model pre-trained on one modality can effectively be exploited to improve the accuracy of a different signal type.
Our approach achieves near state-of-the-art accuracy for diastolic BP and surpasses by 1.5x the accuracy of prior works for systolic BP.
arXiv Detail & Related papers (2025-02-10T13:33:12Z) - DE-PADA: Personalized Augmentation and Domain Adaptation for ECG Biometrics Across Physiological States [6.857781758172894]
We propose DE-PADA, a Dual Expert model with Personalized Augmentation and Domain Adaptation.<n>The model is trained primarily on resting-state data without direct exposure to their exercise data.<n>Experiments on the University of Toronto ECG Database demonstrate the model's effectiveness.
arXiv Detail & Related papers (2025-02-07T14:46:13Z) - rECGnition_v1.0: Arrhythmia detection using cardiologist-inspired multi-modal architecture incorporating demographic attributes in ECG [3.0473237906125954]
We propose a novel multi-modal methodology for ECG analysis and arrhythmia classification.
The proposed rECGnition_v1.0 algorithm paves the way for its deployment in clinics.
arXiv Detail & Related papers (2024-10-09T11:17:02Z) - BISeizuRe: BERT-Inspired Seizure Data Representation to Improve Epilepsy Monitoring [13.35453284825286]
This study presents a novel approach for EEG-based seizure detection leveraging a BERT-based model.
The model, BENDR, undergoes a two-phase training process, pre-training and fine-tuning.
The optimized model demonstrates substantial performance enhancements, achieving as low as 0.23 FP/h, 2.5$times$ lower than the baseline model, with a lower but still acceptable sensitivity rate.
arXiv Detail & Related papers (2024-06-27T14:09:10Z) - ECGMamba: Towards Efficient ECG Classification with BiSSM [3.0120310355085467]
We propose a novel model, ECGMamba, which employs a bidirectional state-space model (BiSSM) to enhance classification efficiency.
The experimental results on two publicly available ECG datasets demonstrate that ECGMamba effectively balances the effectiveness and efficiency of classification.
arXiv Detail & Related papers (2024-06-14T14:55:53Z) - Improving Diffusion Models for ECG Imputation with an Augmented Template
Prior [43.6099225257178]
noisy and poor-quality recordings are a major issue for signals collected using mobile health systems.
Recent studies have explored the imputation of missing values in ECG with probabilistic time-series models.
We present a template-guided denoising diffusion probabilistic model (DDPM), PulseDiff, which is conditioned on an informative prior for a range of health conditions.
arXiv Detail & Related papers (2023-10-24T11:34:15Z) - EKGNet: A 10.96{\mu}W Fully Analog Neural Network for Intra-Patient
Arrhythmia Classification [79.7946379395238]
We present an integrated approach by combining analog computing and deep learning for electrocardiogram (ECG) arrhythmia classification.
We propose EKGNet, a hardware-efficient and fully analog arrhythmia classification architecture that archives high accuracy with low power consumption.
arXiv Detail & Related papers (2023-10-24T02:37:49Z) - Global ECG Classification by Self-Operational Neural Networks with
Feature Injection [25.15075119957447]
We propose a novel approach for inter-patient ECG classification using a compact 1D Self-Organized Operational Neural Networks (Self-ONNs)
We used 1D Self-ONN layers to automatically learn morphological representations from ECG data, enabling us to capture the shape of the ECG waveform around the R peaks.
Using the MIT-BIH arrhythmia benchmark database, the proposed method achieves the highest classification performance ever achieved.
arXiv Detail & Related papers (2022-04-07T22:49:18Z) - Multiple Time Series Fusion Based on LSTM An Application to CAP A Phase
Classification Using EEG [56.155331323304]
Deep learning based electroencephalogram channels' feature level fusion is carried out in this work.
Channel selection, fusion, and classification procedures were optimized by two optimization algorithms.
arXiv Detail & Related papers (2021-12-18T14:17:49Z) - Generalizing electrocardiogram delineation: training convolutional
neural networks with synthetic data augmentation [63.51064808536065]
Existing databases for ECG delineation are small, being insufficient in size and in the array of pathological conditions they represent.
This article delves has two main contributions. First, a pseudo-synthetic data generation algorithm was developed, based in probabilistically composing ECG traces given "pools" of fundamental segments, as cropped from the original databases, and a set of rules for their arrangement into coherent synthetic traces.
Second, two novel segmentation-based loss functions have been developed, which attempt at enforcing the prediction of an exact number of independent structures and at producing closer segmentation boundaries by focusing on a reduced number of samples.
arXiv Detail & Related papers (2021-11-25T10:11:41Z) - Bootstrapping Your Own Positive Sample: Contrastive Learning With
Electronic Health Record Data [62.29031007761901]
This paper proposes a novel contrastive regularized clinical classification model.
We introduce two unique positive sampling strategies specifically tailored for EHR data.
Our framework yields highly competitive experimental results in predicting the mortality risk on real-world COVID-19 EHR data.
arXiv Detail & Related papers (2021-04-07T06:02:04Z) - ECG-DelNet: Delineation of Ambulatory Electrocardiograms with Mixed
Quality Labeling Using Neural Networks [69.25956542388653]
Deep learning (DL) algorithms are gaining weight in academic and industrial settings.
We demonstrate DL can be successfully applied to low interpretative tasks by embedding ECG detection and delineation onto a segmentation framework.
The model was trained using PhysioNet's QT database, comprised of 105 ambulatory ECG recordings.
arXiv Detail & Related papers (2020-05-11T16:29:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.