論文の概要: Within-Document Event Coreference with BERT-Based Contextualized Representations
- arxiv url: http://arxiv.org/abs/2102.09600v2
- Date: Sat, 6 Apr 2024 05:14:07 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-10 06:04:02.978637
- Title: Within-Document Event Coreference with BERT-Based Contextualized Representations
- Title(参考訳): BERTに基づく文脈表現を用いた文書内イベント照合
- Authors: Shafiuddin Rehan Ahmed, James H. Martin,
- Abstract要約: イベントのコア推論は、情報抽出において難しい問題であり続けている。
文脈化された言語表現の最近の進歩は多くのタスクで成功している。
本稿では、事前訓練されたBERTモデルから導出された表現を用いて、ニューラルネットワークの分類器を訓練し、コア参照連鎖を生成する3つのアプローチを提案する。
- 参考スコア(独自算出の注目度): 2.3020018305241337
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Event coreference continues to be a challenging problem in information extraction. With the absence of any external knowledge bases for events, coreference becomes a clustering task that relies on effective representations of the context in which event mentions appear. Recent advances in contextualized language representations have proven successful in many tasks, however, their use in event linking been limited. Here we present a three part approach that (1) uses representations derived from a pretrained BERT model to (2) train a neural classifier to (3) drive a simple clustering algorithm to create coreference chains. We achieve state of the art results with this model on two standard datasets for within-document event coreference task and establish a new standard on a third newer dataset.
- Abstract(参考訳): イベントのコア推論は、情報抽出において難しい問題であり続けている。
イベントの外部知識ベースが存在しないため、コア参照はイベントが参照するコンテキストの効果的な表現に依存するクラスタリングタスクになる。
文脈化言語表現の最近の進歩は多くのタスクで成功したが、イベントリンクでの使用は限られていた。
本稿では,(1)事前学習されたBERTモデルから導出された表現を用いて,(2)ニューラルネットワーク分類器を訓練し,(3)単純なクラスタリングアルゴリズムを駆動してコア参照連鎖を生成する3つのアプローチを提案する。
我々は、このモデルを用いて、文書内イベントコア参照タスク用の2つの標準データセット上で、最先端の結果を達成し、第3の新たなデータセットに新しい標準を確立する。
関連論文リスト
- In-Context Learning for Few-Shot Nested Named Entity Recognition [53.55310639969833]
数発のネストネストNERの設定に有効で革新的なICLフレームワークを導入する。
我々は、新しい実演選択機構であるEnDe retrieverを考案し、ICLプロンプトを改善する。
EnDe検索では,意味的類似性,境界類似性,ラベル類似性という3種類の表現学習を行うために,コントラスト学習を用いる。
論文 参考訳(メタデータ) (2024-02-02T06:57:53Z) - Probing Representations for Document-level Event Extraction [30.523959637364484]
この研究は、文書レベルの情報抽出で学んだ表現に探索パラダイムを適用した最初のものである。
文書レベルのイベント抽出に関連するサーフェス,セマンティクス,イベント理解機能を分析するために,8つの埋め込みプローブを設計した。
これらのモデルからトレーニングされたエンコーダは、わずかに引数の検出とラベリングを改善することができるが、イベントレベルのタスクをわずかに強化するだけである。
論文 参考訳(メタデータ) (2023-10-23T19:33:04Z) - EventBind: Learning a Unified Representation to Bind Them All for Event-based Open-world Understanding [7.797154022794006]
EventBindは、イベントベースの認識のためのビジョン言語モデル(VLM)の可能性を解き放つ新しいフレームワークである。
まず、イベントからの時間情報を微妙にモデル化する新しいイベントエンコーダを紹介する。
次に、コンテントプロンプトを生成し、ハイブリッドテキストプロンプトを利用してEventBindの一般化能力を向上するテキストエンコーダを設計する。
論文 参考訳(メタデータ) (2023-08-06T15:05:42Z) - IXA/Cogcomp at SemEval-2023 Task 2: Context-enriched Multilingual Named
Entity Recognition using Knowledge Bases [53.054598423181844]
3つのステップからなる新しいNERカスケードアプローチを提案する。
我々は、細粒度および新興物質を正確に分類する上で、外部知識基盤の重要性を実証的に示す。
本システムは,低リソース言語設定においても,マルチコネラ2共有タスクにおいて頑健な性能を示す。
論文 参考訳(メタデータ) (2023-04-20T20:30:34Z) - PILED: An Identify-and-Localize Framework for Few-Shot Event Detection [79.66042333016478]
本研究では,事前学習した言語モデルから事象関連知識を引き出すために,クローゼプロンプトを用いた。
型固有のパラメータの数を最小化し、新しい型に対するイベント検出タスクに迅速に適応できるようにします。
論文 参考訳(メタデータ) (2022-02-15T18:01:39Z) - Learning Constraints and Descriptive Segmentation for Subevent Detection [74.48201657623218]
本稿では,サブイベント検出とEventSeg予測の依存関係をキャプチャする制約を学習し,強制するアプローチを提案する。
我々は制約学習にRectifier Networksを採用し、学習した制約をニューラルネットワークの損失関数の正規化項に変換する。
論文 参考訳(メタデータ) (2021-09-13T20:50:37Z) - Pairwise Representation Learning for Event Coreference [73.10563168692667]
イベント参照ペアのためのペアワイズ表現学習(Pairwise Representation Learning, PairwiseRL)手法を開発した。
私たちの表現は、イベントとその引数のエンコーディングを容易にするために、テキストスニペットのより微細で構造化された表現をサポートします。
PairwiseRLは、その単純さにもかかわらず、クロスドキュメントとイントラドキュメントのイベントコアベンチマークベンチマークの両方において、従来の最先端のイベントコアシステムよりも優れていることを示す。
論文 参考訳(メタデータ) (2020-10-24T06:55:52Z) - End-to-End Neural Event Coreference Resolution [41.377231614857614]
本稿では,エンド・ツー・エンドのイベント・コア・アプローチであるE3Cニューラルネットワークを提案する。
提案手法は,2つの標準データセット上での最先端性能を実現する。
論文 参考訳(メタデータ) (2020-09-17T09:00:59Z) - Detecting Ongoing Events Using Contextual Word and Sentence Embeddings [110.83289076967895]
本稿では,OED(Ongoing Event Detection)タスクを紹介する。
目的は、歴史、未来、仮説、あるいは新しいものでも現在のものでもない他の形式や出来事に対してのみ、進行中のイベントの言及を検出することである。
構造化されていないテキストから進行中のイベントに関する構造化情報を抽出する必要があるアプリケーションは、OEDシステムを利用することができる。
論文 参考訳(メタデータ) (2020-07-02T20:44:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。