Modeling epigenetic evolutionary algorithms: An approach based on the
epigenetic regulation process
- URL: http://arxiv.org/abs/2102.09634v1
- Date: Thu, 18 Feb 2021 21:51:50 GMT
- Title: Modeling epigenetic evolutionary algorithms: An approach based on the
epigenetic regulation process
- Authors: Alvarez Lifeth
- Abstract summary: This thesis presents an epigenetic technique for Evolutionary Algorithms, inspired by the epigenetic regulation process.
Epigenetic regulation comprises biological mechanisms by which small molecules, also known as epigenetic tags, are attached to or removed from a particular gene.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Many biological processes have been the source of inspiration for heuristic
methods that generate high-quality solutions to solve optimization and search
problems. This thesis presents an epigenetic technique for Evolutionary
Algorithms, inspired by the epigenetic regulation process, a mechanism to
better understand the ability of individuals to adapt and learn from the
environment. Epigenetic regulation comprises biological mechanisms by which
small molecules, also known as epigenetic tags, are attached to or removed from
a particular gene, affecting the phenotype. Five fundamental elements form the
basis of the designed technique: first, a metaphorical representation of
Epigenetic Tags as binary strings; second, a layer on chromosome top structure
used to bind the tags (the Epigenotype layer); third, a Marking Function to
add, remove, and modify tags; fourth, an Epigenetic Growing Function that acts
like an interpreter, or decoder of the tags located over the alleles, in such a
way that the phenotypic variations can be reflected when evaluating the
individuals; and fifth, a tags inheritance mechanism. A set of experiments are
performed for determining the applicability of the proposed approach.
Related papers
- Predicting Genetic Mutation from Whole Slide Images via Biomedical-Linguistic Knowledge Enhanced Multi-label Classification [119.13058298388101]
We develop a Biological-knowledge enhanced PathGenomic multi-label Transformer to improve genetic mutation prediction performances.
BPGT first establishes a novel gene encoder that constructs gene priors by two carefully designed modules.
BPGT then designs a label decoder that finally performs genetic mutation prediction by two tailored modules.
arXiv Detail & Related papers (2024-06-05T06:42:27Z) - BioDiscoveryAgent: An AI Agent for Designing Genetic Perturbation Experiments [112.25067497985447]
We introduce BioDiscoveryAgent, an agent that designs new experiments, reasons about their outcomes, and efficiently navigates the hypothesis space to reach desired solutions.
BioDiscoveryAgent can uniquely design new experiments without the need to train a machine learning model.
It achieves an average of 21% improvement in predicting relevant genetic perturbations across six datasets.
arXiv Detail & Related papers (2024-05-27T19:57:17Z) - VQDNA: Unleashing the Power of Vector Quantization for Multi-Species Genomic Sequence Modeling [60.91599380893732]
VQDNA is a general-purpose framework that renovates genome tokenization from the perspective of genome vocabulary learning.
By leveraging vector-quantized codebooks as learnable vocabulary, VQDNA can adaptively tokenize genomes into pattern-aware embeddings.
arXiv Detail & Related papers (2024-05-13T20:15:03Z) - Identifying the Attractors of Gene Regulatory Networks from Expression Data under Uncertainty: An Interpretable Approach [0.0]
Given a temporal gene expression profile of a real gene regulatory network, how can the attractors be robustly identified?
This paper addresses this question using a novel approach based on Zadeh Computing with Words.
The proposed scheme could effectively identify the attractors from temporal gene expression data in terms of both fuzzy logic-based and linguistic descriptions.
arXiv Detail & Related papers (2024-03-16T20:56:22Z) - Causal machine learning for single-cell genomics [94.28105176231739]
We discuss the application of machine learning techniques to single-cell genomics and their challenges.
We first present the model that underlies most of current causal approaches to single-cell biology.
We then identify open problems in the application of causal approaches to single-cell data.
arXiv Detail & Related papers (2023-10-23T13:35:24Z) - Epigenetics Algorithms: Self-Reinforcement-Attention mechanism to
regulate chromosomes expression [0.0]
This paper proposes a new epigenetics algorithm that mimics the epigenetics phenomenon known as methylation.
The novelty of our epigenetics algorithms lies primarily in taking advantage of attention mechanisms and deep learning, which fits well with the genes/silencing concept.
arXiv Detail & Related papers (2023-03-15T21:33:21Z) - The Effect of Epigenetic Blocking on Dynamic Multi-Objective
Optimisation Problems [1.4502611532302039]
Epigenetic mechanisms allow quick non- or partially-genetic adaptations to environmental changes.
This paper asks if the advantages that epigenetic inheritance provide in the natural world are replicated in dynamic multi-objective problems.
arXiv Detail & Related papers (2022-11-25T16:33:05Z) - Few-Shot Meta Learning for Recognizing Facial Phenotypes of Genetic
Disorders [55.41644538483948]
Automated classification and similarity retrieval aid physicians in decision-making to diagnose possible genetic conditions as early as possible.
Previous work has addressed the problem as a classification problem and used deep learning methods.
In this study, we used a facial recognition model trained on a large corpus of healthy individuals as a pre-task and transferred it to facial phenotype recognition.
arXiv Detail & Related papers (2022-10-23T11:52:57Z) - Epigenetic opportunities for Evolutionary Computation [0.0]
Evolutionary Computation is a group of biologically inspired algorithms used to solve complex optimisation problems.
It can be split into Evolutionary Algorithms, which take inspiration from genetic inheritance, and Swarm Intelligence algorithms, that take inspiration from cultural inheritance.
This paper breaks down successful bio-inspired algorithms under a contemporary biological framework based on the Extended Evolutionary Synthesis.
arXiv Detail & Related papers (2021-08-10T09:44:53Z) - Epigenetic evolution of deep convolutional models [81.21462458089142]
We build upon a previously proposed neuroevolution framework to evolve deep convolutional models.
We propose a convolutional layer layout which allows kernels of different shapes and sizes to coexist within the same layer.
The proposed layout enables the size and shape of individual kernels within a convolutional layer to be evolved with a corresponding new mutation operator.
arXiv Detail & Related papers (2021-04-12T12:45:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.