Epigenetics Algorithms: Self-Reinforcement-Attention mechanism to
regulate chromosomes expression
- URL: http://arxiv.org/abs/2303.10154v1
- Date: Wed, 15 Mar 2023 21:33:21 GMT
- Title: Epigenetics Algorithms: Self-Reinforcement-Attention mechanism to
regulate chromosomes expression
- Authors: Mohamed Djallel Dilmi, Hanene Azzag and Mustapha Lebbah
- Abstract summary: This paper proposes a new epigenetics algorithm that mimics the epigenetics phenomenon known as methylation.
The novelty of our epigenetics algorithms lies primarily in taking advantage of attention mechanisms and deep learning, which fits well with the genes/silencing concept.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Genetic algorithms are a well-known example of bio-inspired heuristic
methods. They mimic natural selection by modeling several operators such as
mutation, crossover, and selection. Recent discoveries about Epigenetics
regulation processes that occur "on top of" or "in addition to" the genetic
basis for inheritance involve changes that affect and improve gene expression.
They raise the question of improving genetic algorithms (GAs) by modeling
epigenetics operators. This paper proposes a new epigenetics algorithm that
mimics the epigenetics phenomenon known as DNA methylation. The novelty of our
epigenetics algorithms lies primarily in taking advantage of attention
mechanisms and deep learning, which fits well with the genes
enhancing/silencing concept. The paper develops theoretical arguments and
presents empirical studies to exhibit the capability of the proposed
epigenetics algorithms to solve more complex problems efficiently than has been
possible with simple GAs; for example, facing two Non-convex (multi-peaks)
optimization problems as presented in this paper, the proposed epigenetics
algorithm provides good performances and shows an excellent ability to overcome
the lack of local optimum and thus find the global optimum.
Related papers
- Artificial Intelligence and Deep Learning Algorithms for Epigenetic Sequence Analysis: A Review for Epigeneticists and AI Experts [2.5367788916245964]
Epigenetics encompasses mechanisms that can alter the expression of genes without changing the underlying genetic sequence.
The changes in gene regulation and expression can manifest in the form of various diseases and disorders such as cancer and congenital deformities.
Machine learning and artificial intelligence (AI) approaches have been extensively used for mapping epigenetic modifications to their phenotypic manifestations.
arXiv Detail & Related papers (2025-04-01T01:02:34Z) - Learning to Discover Regulatory Elements for Gene Expression Prediction [59.470991831978516]
Seq2Exp is a Sequence to Expression network designed to discover and extract regulatory elements that drive target gene expression.
Our approach captures the causal relationship between epigenomic signals, DNA sequences and their associated regulatory elements.
arXiv Detail & Related papers (2025-02-19T03:25:49Z) - GENERator: A Long-Context Generative Genomic Foundation Model [66.46537421135996]
We present GENERator, a generative genomic foundation model featuring a context length of 98k base pairs (bp) and 1.2B parameters.
Trained on an expansive dataset comprising 386B bp of DNA, the GENERator demonstrates state-of-the-art performance across both established and newly proposed benchmarks.
It also shows significant promise in sequence optimization, particularly through the prompt-responsive generation of enhancer sequences with specific activity profiles.
arXiv Detail & Related papers (2025-02-11T05:39:49Z) - Survey and Improvement Strategies for Gene Prioritization with Large Language Models [61.24568051916653]
Large language models (LLMs) have performed well in medical exams, but their effectiveness in diagnosing rare genetic diseases has not been assessed.
We used multi-agent and Human Phenotype Ontology (HPO) classification to categorized patients based on phenotypes and solvability levels.
At baseline, GPT-4 outperformed other LLMs, achieving near 30% accuracy in ranking causal genes correctly.
arXiv Detail & Related papers (2025-01-30T23:03:03Z) - Cross-Attention Graph Neural Networks for Inferring Gene Regulatory Networks with Skewed Degree Distribution [9.919024883502322]
Cross-Attention Complex Dual Graph Embedding Model (XATGRN)
Our model consistently outperforms existing state-of-the-art methods across various datasets.
arXiv Detail & Related papers (2024-12-18T10:56:40Z) - GeneQuery: A General QA-based Framework for Spatial Gene Expression Predictions from Histology Images [41.732831871866516]
Whole-slide hematoxylin and eosin stained histological images are readily accessible and allow for detailed examinations of tissue structure and composition at the microscopic level.
Recent advancements have utilized these histological images to predict spatially resolved gene expression profiles.
GeneQuery aims to solve this gene expression prediction task in a question-answering (QA) manner for better generality and flexibility.
arXiv Detail & Related papers (2024-11-27T14:33:13Z) - An Evolutional Neural Network Framework for Classification of Microarray Data [0.0]
This research aims to apply a hybrid model of Genetic Algorithm and Neural Network to overcome the problem during subset selection of informative genes.
Experimental results show the proposed method suggested high accuracy and minimum number of selected genes in comparison with other machine learning algorithms.
arXiv Detail & Related papers (2024-11-20T13:48:40Z) - Predicting Genetic Mutation from Whole Slide Images via Biomedical-Linguistic Knowledge Enhanced Multi-label Classification [119.13058298388101]
We develop a Biological-knowledge enhanced PathGenomic multi-label Transformer to improve genetic mutation prediction performances.
BPGT first establishes a novel gene encoder that constructs gene priors by two carefully designed modules.
BPGT then designs a label decoder that finally performs genetic mutation prediction by two tailored modules.
arXiv Detail & Related papers (2024-06-05T06:42:27Z) - BioDiscoveryAgent: An AI Agent for Designing Genetic Perturbation Experiments [112.25067497985447]
We introduce BioDiscoveryAgent, an agent that designs new experiments, reasons about their outcomes, and efficiently navigates the hypothesis space to reach desired solutions.
BioDiscoveryAgent can uniquely design new experiments without the need to train a machine learning model.
It achieves an average of 21% improvement in predicting relevant genetic perturbations across six datasets.
arXiv Detail & Related papers (2024-05-27T19:57:17Z) - VQDNA: Unleashing the Power of Vector Quantization for Multi-Species Genomic Sequence Modeling [60.91599380893732]
VQDNA is a general-purpose framework that renovates genome tokenization from the perspective of genome vocabulary learning.
By leveraging vector-quantized codebooks as learnable vocabulary, VQDNA can adaptively tokenize genomes into pattern-aware embeddings.
arXiv Detail & Related papers (2024-05-13T20:15:03Z) - Identifying the Attractors of Gene Regulatory Networks from Expression Data under Uncertainty: An Interpretable Approach [0.0]
Given a temporal gene expression profile of a real gene regulatory network, how can the attractors be robustly identified?
This paper addresses this question using a novel approach based on Zadeh Computing with Words.
The proposed scheme could effectively identify the attractors from temporal gene expression data in terms of both fuzzy logic-based and linguistic descriptions.
arXiv Detail & Related papers (2024-03-16T20:56:22Z) - Causal machine learning for single-cell genomics [94.28105176231739]
We discuss the application of machine learning techniques to single-cell genomics and their challenges.
We first present the model that underlies most of current causal approaches to single-cell biology.
We then identify open problems in the application of causal approaches to single-cell data.
arXiv Detail & Related papers (2023-10-23T13:35:24Z) - Genetic Engineering Algorithm (GEA): An Efficient Metaheuristic
Algorithm for Solving Combinatorial Optimization Problems [1.8434042562191815]
Genetic Algorithms (GAs) are known for their efficiency in solving optimization problems.
This paper proposes a new metaheuristic algorithm called the Genetic Engineering Algorithm (GEA) that draws inspiration from genetic engineering concepts.
arXiv Detail & Related papers (2023-09-28T13:05:30Z) - Machine Learning Methods for Cancer Classification Using Gene Expression
Data: A Review [77.34726150561087]
Cancer is the second major cause of death after cardiovascular diseases.
Gene expression can play a fundamental role in the early detection of cancer.
This study reviews recent progress in gene expression analysis for cancer classification using machine learning methods.
arXiv Detail & Related papers (2023-01-28T15:03:03Z) - Unsupervised ensemble-based phenotyping helps enhance the
discoverability of genes related to heart morphology [57.25098075813054]
We propose a new framework for gene discovery entitled Un Phenotype Ensembles.
It builds a redundant yet highly expressive representation by pooling a set of phenotypes learned in an unsupervised manner.
These phenotypes are then analyzed via (GWAS), retaining only highly confident and stable associations.
arXiv Detail & Related papers (2023-01-07T18:36:44Z) - The Effect of Epigenetic Blocking on Dynamic Multi-Objective
Optimisation Problems [1.4502611532302039]
Epigenetic mechanisms allow quick non- or partially-genetic adaptations to environmental changes.
This paper asks if the advantages that epigenetic inheritance provide in the natural world are replicated in dynamic multi-objective problems.
arXiv Detail & Related papers (2022-11-25T16:33:05Z) - Modeling epigenetic evolutionary algorithms: An approach based on the
epigenetic regulation process [0.0]
This thesis presents an epigenetic technique for Evolutionary Algorithms, inspired by the epigenetic regulation process.
Epigenetic regulation comprises biological mechanisms by which small molecules, also known as epigenetic tags, are attached to or removed from a particular gene.
arXiv Detail & Related papers (2021-02-18T21:51:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.