To Trust or to Think: Cognitive Forcing Functions Can Reduce
Overreliance on AI in AI-assisted Decision-making
- URL: http://arxiv.org/abs/2102.09692v1
- Date: Fri, 19 Feb 2021 00:38:53 GMT
- Title: To Trust or to Think: Cognitive Forcing Functions Can Reduce
Overreliance on AI in AI-assisted Decision-making
- Authors: Zana Bu\c{c}inca, Maja Barbara Malaya, Krzysztof Z. Gajos
- Abstract summary: People supported by AI-powered decision support tools frequently overrely on the AI.
Adding explanations to the AI decisions does not appear to reduce the overreliance.
Our research suggests that human cognitive motivation moderates the effectiveness of explainable AI solutions.
- Score: 4.877174544937129
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: People supported by AI-powered decision support tools frequently overrely on
the AI: they accept an AI's suggestion even when that suggestion is wrong.
Adding explanations to the AI decisions does not appear to reduce the
overreliance and some studies suggest that it might even increase it. Informed
by the dual-process theory of cognition, we posit that people rarely engage
analytically with each individual AI recommendation and explanation, and
instead develop general heuristics about whether and when to follow the AI
suggestions. Building on prior research on medical decision-making, we designed
three cognitive forcing interventions to compel people to engage more
thoughtfully with the AI-generated explanations. We conducted an experiment
(N=199), in which we compared our three cognitive forcing designs to two simple
explainable AI approaches and to a no-AI baseline. The results demonstrate that
cognitive forcing significantly reduced overreliance compared to the simple
explainable AI approaches. However, there was a trade-off: people assigned the
least favorable subjective ratings to the designs that reduced the overreliance
the most. To audit our work for intervention-generated inequalities, we
investigated whether our interventions benefited equally people with different
levels of Need for Cognition (i.e., motivation to engage in effortful mental
activities). Our results show that, on average, cognitive forcing interventions
benefited participants higher in Need for Cognition more. Our research suggests
that human cognitive motivation moderates the effectiveness of explainable AI
solutions.
Related papers
- Raising the Stakes: Performance Pressure Improves AI-Assisted Decision Making [57.53469908423318]
We show the effects of performance pressure on AI advice reliance when laypeople complete a common AI-assisted task.
We find that when the stakes are high, people use AI advice more appropriately than when stakes are lower, regardless of the presence of an AI explanation.
arXiv Detail & Related papers (2024-10-21T22:39:52Z) - Contrastive Explanations That Anticipate Human Misconceptions Can Improve Human Decision-Making Skills [24.04643864795939]
People's decision-making abilities often fail to improve when they rely on AI for decision-support.
Most AI systems offer "unilateral" explanations that justify the AI's decision but do not account for users' thinking.
We introduce a framework for generating human-centered contrastive explanations that explain the difference between AI's choice and a predicted, likely human choice.
arXiv Detail & Related papers (2024-10-05T18:21:04Z) - Combining AI Control Systems and Human Decision Support via Robustness and Criticality [53.10194953873209]
We extend a methodology for adversarial explanations (AE) to state-of-the-art reinforcement learning frameworks.
We show that the learned AI control system demonstrates robustness against adversarial tampering.
In a training / learning framework, this technology can improve both the AI's decisions and explanations through human interaction.
arXiv Detail & Related papers (2024-07-03T15:38:57Z) - Does More Advice Help? The Effects of Second Opinions in AI-Assisted
Decision Making [45.20615051119694]
We explore whether and how the provision of second opinions may affect decision-makers' behavior and performance in AI-assisted decision-making.
We find that if both the AI model's decision recommendation and a second opinion are always presented together, decision-makers reduce their over-reliance on AI.
If decision-makers have the control to decide when to solicit a peer's second opinion, we find that their active solicitations of second opinions have the potential to mitigate over-reliance on AI.
arXiv Detail & Related papers (2024-01-13T12:19:01Z) - Understanding the Effect of Counterfactual Explanations on Trust and
Reliance on AI for Human-AI Collaborative Clinical Decision Making [5.381004207943597]
We conducted an experiment with seven therapists and ten laypersons on the task of assessing post-stroke survivors' quality of motion.
We analyzed their performance, agreement level on the task, and reliance on AI without and with two types of AI explanations.
Our work discusses the potential of counterfactual explanations to better estimate the accuracy of an AI model and reduce over-reliance on wrong' AI outputs.
arXiv Detail & Related papers (2023-08-08T16:23:46Z) - Knowing About Knowing: An Illusion of Human Competence Can Hinder
Appropriate Reliance on AI Systems [13.484359389266864]
This paper addresses whether the Dunning-Kruger Effect (DKE) can hinder appropriate reliance on AI systems.
DKE is a metacognitive bias due to which less-competent individuals overestimate their own skill and performance.
We found that participants who overestimate their performance tend to exhibit under-reliance on AI systems.
arXiv Detail & Related papers (2023-01-25T14:26:10Z) - Understanding the Role of Human Intuition on Reliance in Human-AI
Decision-Making with Explanations [44.01143305912054]
We study how decision-makers' intuition affects their use of AI predictions and explanations.
Our results identify three types of intuition involved in reasoning about AI predictions and explanations.
We use these pathways to explain why feature-based explanations did not improve participants' decision outcomes and increased their overreliance on AI.
arXiv Detail & Related papers (2023-01-18T01:33:50Z) - Improving Human-AI Collaboration With Descriptions of AI Behavior [14.904401331154062]
People work with AI systems to improve their decision making, but often under- or over-rely on AI predictions and perform worse than they would have unassisted.
To help people appropriately rely on AI aids, we propose showing them behavior descriptions.
arXiv Detail & Related papers (2023-01-06T00:33:08Z) - Cybertrust: From Explainable to Actionable and Interpretable AI (AI2) [58.981120701284816]
Actionable and Interpretable AI (AI2) will incorporate explicit quantifications and visualizations of user confidence in AI recommendations.
It will allow examining and testing of AI system predictions to establish a basis for trust in the systems' decision making.
arXiv Detail & Related papers (2022-01-26T18:53:09Z) - Trustworthy AI: A Computational Perspective [54.80482955088197]
We focus on six of the most crucial dimensions in achieving trustworthy AI: (i) Safety & Robustness, (ii) Non-discrimination & Fairness, (iii) Explainability, (iv) Privacy, (v) Accountability & Auditability, and (vi) Environmental Well-Being.
For each dimension, we review the recent related technologies according to a taxonomy and summarize their applications in real-world systems.
arXiv Detail & Related papers (2021-07-12T14:21:46Z) - Effect of Confidence and Explanation on Accuracy and Trust Calibration
in AI-Assisted Decision Making [53.62514158534574]
We study whether features that reveal case-specific model information can calibrate trust and improve the joint performance of the human and AI.
We show that confidence score can help calibrate people's trust in an AI model, but trust calibration alone is not sufficient to improve AI-assisted decision making.
arXiv Detail & Related papers (2020-01-07T15:33:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.