Improving Human-AI Collaboration With Descriptions of AI Behavior
- URL: http://arxiv.org/abs/2301.06937v1
- Date: Fri, 6 Jan 2023 00:33:08 GMT
- Title: Improving Human-AI Collaboration With Descriptions of AI Behavior
- Authors: \'Angel Alexander Cabrera, Adam Perer, Jason I. Hong
- Abstract summary: People work with AI systems to improve their decision making, but often under- or over-rely on AI predictions and perform worse than they would have unassisted.
To help people appropriately rely on AI aids, we propose showing them behavior descriptions.
- Score: 14.904401331154062
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: People work with AI systems to improve their decision making, but often
under- or over-rely on AI predictions and perform worse than they would have
unassisted. To help people appropriately rely on AI aids, we propose showing
them behavior descriptions, details of how AI systems perform on subgroups of
instances. We tested the efficacy of behavior descriptions through user studies
with 225 participants in three distinct domains: fake review detection,
satellite image classification, and bird classification. We found that behavior
descriptions can increase human-AI accuracy through two mechanisms: helping
people identify AI failures and increasing people's reliance on the AI when it
is more accurate. These findings highlight the importance of people's mental
models in human-AI collaboration and show that informing people of high-level
AI behaviors can significantly improve AI-assisted decision making.
Related papers
- Raising the Stakes: Performance Pressure Improves AI-Assisted Decision Making [57.53469908423318]
We show the effects of performance pressure on AI advice reliance when laypeople complete a common AI-assisted task.
We find that when the stakes are high, people use AI advice more appropriately than when stakes are lower, regardless of the presence of an AI explanation.
arXiv Detail & Related papers (2024-10-21T22:39:52Z) - Rolling in the deep of cognitive and AI biases [1.556153237434314]
We argue that there is urgent need to understand AI as a sociotechnical system, inseparable from the conditions in which it is designed, developed and deployed.
We address this critical issue by following a radical new methodology under which human cognitive biases become core entities in our AI fairness overview.
We introduce a new mapping, which justifies the humans to AI biases and we detect relevant fairness intensities and inter-dependencies.
arXiv Detail & Related papers (2024-07-30T21:34:04Z) - Understanding the Effect of Counterfactual Explanations on Trust and
Reliance on AI for Human-AI Collaborative Clinical Decision Making [5.381004207943597]
We conducted an experiment with seven therapists and ten laypersons on the task of assessing post-stroke survivors' quality of motion.
We analyzed their performance, agreement level on the task, and reliance on AI without and with two types of AI explanations.
Our work discusses the potential of counterfactual explanations to better estimate the accuracy of an AI model and reduce over-reliance on wrong' AI outputs.
arXiv Detail & Related papers (2023-08-08T16:23:46Z) - Fairness in AI and Its Long-Term Implications on Society [68.8204255655161]
We take a closer look at AI fairness and analyze how lack of AI fairness can lead to deepening of biases over time.
We discuss how biased models can lead to more negative real-world outcomes for certain groups.
If the issues persist, they could be reinforced by interactions with other risks and have severe implications on society in the form of social unrest.
arXiv Detail & Related papers (2023-04-16T11:22:59Z) - Advancing Human-AI Complementarity: The Impact of User Expertise and
Algorithmic Tuning on Joint Decision Making [10.890854857970488]
Many factors can impact success of Human-AI teams, including a user's domain expertise, mental models of an AI system, trust in recommendations, and more.
Our study examined user performance in a non-trivial blood vessel labeling task where participants indicated whether a given blood vessel was flowing or stalled.
Our results show that while recommendations from an AI-Assistant can aid user decision making, factors such as users' baseline performance relative to the AI and complementary tuning of AI error types significantly impact overall team performance.
arXiv Detail & Related papers (2022-08-16T21:39:58Z) - Cybertrust: From Explainable to Actionable and Interpretable AI (AI2) [58.981120701284816]
Actionable and Interpretable AI (AI2) will incorporate explicit quantifications and visualizations of user confidence in AI recommendations.
It will allow examining and testing of AI system predictions to establish a basis for trust in the systems' decision making.
arXiv Detail & Related papers (2022-01-26T18:53:09Z) - Trustworthy AI: A Computational Perspective [54.80482955088197]
We focus on six of the most crucial dimensions in achieving trustworthy AI: (i) Safety & Robustness, (ii) Non-discrimination & Fairness, (iii) Explainability, (iv) Privacy, (v) Accountability & Auditability, and (vi) Environmental Well-Being.
For each dimension, we review the recent related technologies according to a taxonomy and summarize their applications in real-world systems.
arXiv Detail & Related papers (2021-07-12T14:21:46Z) - To Trust or to Think: Cognitive Forcing Functions Can Reduce
Overreliance on AI in AI-assisted Decision-making [4.877174544937129]
People supported by AI-powered decision support tools frequently overrely on the AI.
Adding explanations to the AI decisions does not appear to reduce the overreliance.
Our research suggests that human cognitive motivation moderates the effectiveness of explainable AI solutions.
arXiv Detail & Related papers (2021-02-19T00:38:53Z) - Does the Whole Exceed its Parts? The Effect of AI Explanations on
Complementary Team Performance [44.730580857733]
Prior studies observed improvements from explanations only when the AI, alone, outperformed both the human and the best team.
We conduct mixed-method user studies on three datasets, where an AI with accuracy comparable to humans helps participants solve a task.
We find explanations increase the chance that humans will accept the AI's recommendation, regardless of its correctness.
arXiv Detail & Related papers (2020-06-26T03:34:04Z) - Effect of Confidence and Explanation on Accuracy and Trust Calibration
in AI-Assisted Decision Making [53.62514158534574]
We study whether features that reveal case-specific model information can calibrate trust and improve the joint performance of the human and AI.
We show that confidence score can help calibrate people's trust in an AI model, but trust calibration alone is not sufficient to improve AI-assisted decision making.
arXiv Detail & Related papers (2020-01-07T15:33:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.