Scaling Creative Inspiration with Fine-Grained Functional Facets of
Product Ideas
- URL: http://arxiv.org/abs/2102.09761v1
- Date: Fri, 19 Feb 2021 06:30:41 GMT
- Title: Scaling Creative Inspiration with Fine-Grained Functional Facets of
Product Ideas
- Authors: Tom Hope, Ronen Tamari, Hyeonsu Kang, Daniel Hershcovich, Joel Chan,
Aniket Kittur, Dafna Shahaf
- Abstract summary: Web-scale repositories of products, patents and scientific papers offer an opportunity for creating automated systems.
Yet the common representation of ideas is in the form of raw textual descriptions.
We propose a novel computational representation that automatically breaks up products into fine-grained functional facets.
- Score: 21.62996957134357
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Web-scale repositories of products, patents and scientific papers offer an
opportunity for creating automated systems that scour millions of ideas and
assist users in discovering inspirations and solutions. Yet the common
representation of ideas is in the form of raw textual descriptions, lacking
important structure that is required for supporting creative innovation. Prior
work has pointed to the importance of functional structure -- capturing the
mechanisms and purposes of inventions -- for allowing users to discover
structural connections across ideas and creatively adapt existing technologies.
However, the use of functional representations was either coarse and limited in
expressivity, or dependent on curated knowledge bases with poor coverage and
significant manual effort from users.
To help bridge this gap and unlock the potential of large-scale idea mining,
we propose a novel computational representation that automatically breaks up
products into fine-grained functional facets. We train a model to extract these
facets from a challenging real-world corpus of invention descriptions, and
represent each product as a set of facet embeddings. We design similarity
metrics that support granular matching between functional facets across ideas,
and use them to build a novel functional search capability that enables
expressive queries for mechanisms and purposes. We construct a graph capturing
hierarchical relations between purposes and mechanisms across an entire corpus
of products, and use the graph to help problem-solvers explore the design space
around a focal problem and view related problem perspectives. In empirical user
studies, our approach leads to a significant boost in search accuracy and in
the quality of creative inspirations, outperforming strong baselines and
state-of-art representations of product texts by 50-60%.
Related papers
- A Framework for Collaborating a Large Language Model Tool in Brainstorming for Triggering Creative Thoughts [2.709166684084394]
This study proposes a framework called GPS, which employs goals, prompts, and strategies to guide designers to systematically work with an LLM tool for improving the creativity of ideas generated during brainstorming.
Our framework, tested through a design example and a case study, demonstrates its effectiveness in stimulating creativity and its seamless LLM tool integration into design practices.
arXiv Detail & Related papers (2024-10-10T13:39:27Z) - Diffusion-Based Visual Art Creation: A Survey and New Perspectives [51.522935314070416]
This survey explores the emerging realm of diffusion-based visual art creation, examining its development from both artistic and technical perspectives.
Our findings reveal how artistic requirements are transformed into technical challenges and highlight the design and application of diffusion-based methods within visual art creation.
We aim to shed light on the mechanisms through which AI systems emulate and possibly, enhance human capacities in artistic perception and creativity.
arXiv Detail & Related papers (2024-08-22T04:49:50Z) - MetaDesigner: Advancing Artistic Typography through AI-Driven, User-Centric, and Multilingual WordArt Synthesis [65.78359025027457]
MetaDesigner revolutionizes artistic typography by leveraging the strengths of Large Language Models (LLMs) to drive a design paradigm centered around user engagement.
A comprehensive feedback mechanism harnesses insights from multimodal models and user evaluations to refine and enhance the design process iteratively.
Empirical validations highlight MetaDesigner's capability to effectively serve diverse WordArt applications, consistently producing aesthetically appealing and context-sensitive results.
arXiv Detail & Related papers (2024-06-28T11:58:26Z) - LVLM-Interpret: An Interpretability Tool for Large Vision-Language Models [50.259006481656094]
We present a novel interactive application aimed towards understanding the internal mechanisms of large vision-language models.
Our interface is designed to enhance the interpretability of the image patches, which are instrumental in generating an answer.
We present a case study of how our application can aid in understanding failure mechanisms in a popular large multi-modal model: LLaVA.
arXiv Detail & Related papers (2024-04-03T23:57:34Z) - Binding Dynamics in Rotating Features [72.80071820194273]
We propose an alternative "cosine binding" mechanism, which explicitly computes the alignment between features and adjusts weights accordingly.
This allows us to draw direct connections to self-attention and biological neural processes, and to shed light on the fundamental dynamics for object-centric representations to emerge in Rotating Features.
arXiv Detail & Related papers (2024-02-08T12:31:08Z) - Human Machine Co-Creation. A Complementary Cognitive Approach to
Creative Character Design Process Using GANs [0.0]
Two neural networks compete to generate new visual contents indistinguishable from the original dataset.
The proposed approach aims to inform the process of perceiving, knowing, and making.
The machine generated concepts are used as a launching platform for character designers to conceptualize new characters.
arXiv Detail & Related papers (2023-11-23T12:18:39Z) - The Creative Frontier of Generative AI: Managing the Novelty-Usefulness
Tradeoff [0.4873362301533825]
We explore the optimal balance between novelty and usefulness in generative Artificial Intelligence (AI) systems.
Overemphasizing either aspect can lead to limitations such as hallucinations and memorization.
arXiv Detail & Related papers (2023-06-06T11:44:57Z) - Rotating Features for Object Discovery [74.1465486264609]
We present Rotating Features, a generalization of complex-valued features to higher dimensions, and a new evaluation procedure for extracting objects from distributed representations.
Together, these advancements enable us to scale distributed object-centric representations from simple toy to real-world data.
arXiv Detail & Related papers (2023-06-01T12:16:26Z) - Augmenting Character Designers Creativity Using Generative Adversarial
Networks [0.0]
Generative Adversarial Networks (GANs) continue to attract the attention of researchers in different fields.
Most recent GANs are focused on realism, however, generating hyper-realistic output is not a priority for some domains.
We present a comparison between different GAN architectures and their performance when trained from scratch on a new visual characters dataset.
We also explore alternative techniques, such as transfer learning and data augmentation, to overcome computational resource limitations.
arXiv Detail & Related papers (2023-05-28T10:52:03Z) - Enhancing user creativity: Semantic measures for idea generation [0.0]
We analyze a dataset of design problem-solving conversations in real-world settings by using 49 semantic measures based on WordNet 3.1.
We show that a divergence of semantic similarity, an increased information content, and a decreased polysemy predict the success of generated ideas.
These results advance cognitive science by identifying real-world processes in human problem solving.
arXiv Detail & Related papers (2021-06-18T13:47:56Z) - SEEK: Segmented Embedding of Knowledge Graphs [77.5307592941209]
We propose a lightweight modeling framework that can achieve highly competitive relational expressiveness without increasing the model complexity.
Our framework focuses on the design of scoring functions and highlights two critical characteristics: 1) facilitating sufficient feature interactions; 2) preserving both symmetry and antisymmetry properties of relations.
arXiv Detail & Related papers (2020-05-02T15:15:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.