A Framework for Collaborating a Large Language Model Tool in Brainstorming for Triggering Creative Thoughts
- URL: http://arxiv.org/abs/2410.11877v1
- Date: Thu, 10 Oct 2024 13:39:27 GMT
- Title: A Framework for Collaborating a Large Language Model Tool in Brainstorming for Triggering Creative Thoughts
- Authors: Hung-Fu Chang, Tong Li,
- Abstract summary: This study proposes a framework called GPS, which employs goals, prompts, and strategies to guide designers to systematically work with an LLM tool for improving the creativity of ideas generated during brainstorming.
Our framework, tested through a design example and a case study, demonstrates its effectiveness in stimulating creativity and its seamless LLM tool integration into design practices.
- Score: 2.709166684084394
- License:
- Abstract: Creativity involves not only generating new ideas from scratch but also redefining existing concepts and synthesizing previous insights. Among various techniques developed to foster creative thinking, brainstorming is widely used. With recent advancements in Large Language Models (LLMs), tools like ChatGPT have significantly impacted various fields by using prompts to facilitate complex tasks. While current research primarily focuses on generating accurate responses, there is a need to explore how prompt engineering can enhance creativity, particularly in brainstorming. Therefore, this study addresses this gap by proposing a framework called GPS, which employs goals, prompts, and strategies to guide designers to systematically work with an LLM tool for improving the creativity of ideas generated during brainstorming. Additionally, we adapted the Torrance Tests of Creative Thinking (TTCT) for measuring the creativity of the ideas generated by AI. Our framework, tested through a design example and a case study, demonstrates its effectiveness in stimulating creativity and its seamless LLM tool integration into design practices. The results indicate that our framework can benefit brainstorming sessions with LLM tools, enhancing both the creativity and usefulness of generated ideas.
Related papers
- Technical Report: Enhancing LLM Reasoning with Reward-guided Tree Search [95.06503095273395]
o1-like reasoning approach is challenging, and researchers have been making various attempts to advance this open area of research.
We present a preliminary exploration into enhancing the reasoning abilities of LLMs through reward-guided tree search algorithms.
arXiv Detail & Related papers (2024-11-18T16:15:17Z) - A Novel Idea Generation Tool using a Structured Conversational AI (CAI) System [0.0]
This paper presents a novel conversational AI-enabled active ideation interface as a creative idea-generation tool to assist novice designers.
It is a dynamic, interactive, and contextually responsive approach, actively involving a large language model (LLM) from the domain of natural language processing (NLP) in artificial intelligence (AI)
Integrating such AI models with ideation creates what we refer to as an Active Ideation scenario, which helps foster continuous dialogue-based interaction, context-sensitive conversation, and prolific idea generation.
arXiv Detail & Related papers (2024-09-09T16:02:27Z) - The creative psychometric item generator: a framework for item generation and validation using large language models [1.765099515298011]
Large language models (LLMs) are being used to automate workplace processes requiring a high degree of creativity.
We develop a psychometrically inspired framework for creating test items for a classic free-response creativity test: the creative problem-solving (CPS) task.
We find strong empirical evidence that CPIG generates valid and reliable items and that this effect is not attributable to known biases in the evaluation process.
arXiv Detail & Related papers (2024-08-30T18:31:02Z) - Cognitive LLMs: Towards Integrating Cognitive Architectures and Large Language Models for Manufacturing Decision-making [51.737762570776006]
LLM-ACTR is a novel neuro-symbolic architecture that provides human-aligned and versatile decision-making.
Our framework extracts and embeds knowledge of ACT-R's internal decision-making process as latent neural representations.
Our experiments on novel Design for Manufacturing tasks show both improved task performance as well as improved grounded decision-making capability.
arXiv Detail & Related papers (2024-08-17T11:49:53Z) - Enhancing Creativity in Large Language Models through Associative Thinking Strategies [9.09055730592338]
Associative thinking strategies have been found to help humans boost creativity.
We investigate whether prompting Large Language Models to connect disparate concepts can augment their creative outputs.
Our findings show that leveraging associative thinking techniques can significantly improve the originality of vGPT-4's responses.
arXiv Detail & Related papers (2024-05-09T16:42:29Z) - Cantor: Inspiring Multimodal Chain-of-Thought of MLLM [83.6663322930814]
We argue that converging visual context acquisition and logical reasoning is pivotal for tackling visual reasoning tasks.
We propose an innovative multimodal CoT framework, termed Cantor, characterized by a perception-decision architecture.
Our experiments demonstrate the efficacy of the proposed framework, showing significant improvements in multimodal CoT performance.
arXiv Detail & Related papers (2024-04-24T17:59:48Z) - Can AI Be as Creative as Humans? [84.43873277557852]
We prove in theory that AI can be as creative as humans under the condition that it can properly fit the data generated by human creators.
The debate on AI's creativity is reduced into the question of its ability to fit a sufficient amount of data.
arXiv Detail & Related papers (2024-01-03T08:49:12Z) - Luminate: Structured Generation and Exploration of Design Space with Large Language Models for Human-AI Co-Creation [19.62178304006683]
We argue that current interaction paradigms fall short, guiding users towards rapid convergence on a limited set of ideas.
We propose a framework that facilitates the structured generation of design space in which users can seamlessly explore, evaluate, and synthesize a multitude of responses.
arXiv Detail & Related papers (2023-10-19T17:53:14Z) - CREATOR: Tool Creation for Disentangling Abstract and Concrete Reasoning of Large Language Models [74.22729793816451]
Large Language Models (LLMs) have made significant progress in utilizing tools, but their ability is limited by API availability.
We propose CREATOR, a novel framework that enables LLMs to create their own tools using documentation and code realization.
We evaluate CREATOR on MATH and TabMWP benchmarks, respectively consisting of challenging math competition problems.
arXiv Detail & Related papers (2023-05-23T17:51:52Z) - Automatic Creativity Measurement in Scratch Programs Across Modalities [6.242018846706069]
We make the journey fromdefining a formal measure of creativity that is efficientlycomputable to applying the measure in a practical domain.
We adapted the general measure for projects in the popular visual programming language Scratch.
We designed a machine learning model for predicting the creativity of Scratch projects, trained and evaluated on human expert creativity assessments.
arXiv Detail & Related papers (2022-11-07T10:43:36Z) - Explaining Creative Artifacts [69.86890599471202]
We develop an inverse problem formulation to deconstruct the products of and compositional creativity into associative chains.
In particular, our formulation is structured as solving a traveling salesman problem through a knowledge graph of associative elements.
arXiv Detail & Related papers (2020-10-14T14:32:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.