Sim-Env: Decoupling OpenAI Gym Environments from Simulation Models
- URL: http://arxiv.org/abs/2102.09824v2
- Date: Mon, 22 Feb 2021 14:02:40 GMT
- Title: Sim-Env: Decoupling OpenAI Gym Environments from Simulation Models
- Authors: Andreas Schuderer (1 and 2), Stefano Bromuri (1) and Marko van Eekelen
(1 and 3) ((1) Open University of the Netherlands, (2) APG Algemene Pensioen
Groep N.V., (3) Radboud University)
- Abstract summary: Reinforcement learning (RL) is one of the most active fields of AI research.
Development methodology still lags behind, with a severe lack of standard APIs to foster the development of RL applications.
We present a workflow and tools for the decoupled development and maintenance of multi-purpose agent-based models and derived single-purpose reinforcement learning environments.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Reinforcement learning (RL) is one of the most active fields of AI research.
Despite the interest demonstrated by the research community in reinforcement
learning, the development methodology still lags behind, with a severe lack of
standard APIs to foster the development of RL applications. OpenAI Gym is
probably the most used environment to develop RL applications and simulations,
but most of the abstractions proposed in such a framework are still assuming a
semi-structured methodology. This is particularly relevant for agent-based
models whose purpose is to analyse adaptive behaviour displayed by
self-learning agents in the simulation. In order to bridge this gap, we present
a workflow and tools for the decoupled development and maintenance of
multi-purpose agent-based models and derived single-purpose reinforcement
learning environments, enabling the researcher to swap out environments with
ones representing different perspectives or different reward models, all while
keeping the underlying domain model intact and separate. The Sim-Env Python
library generates OpenAI-Gym-compatible reinforcement learning environments
that use existing or purposely created domain models as their simulation
back-ends. Its design emphasizes ease-of-use, modularity and code separation.
Related papers
- Orchestration of Emulator Assisted Mobile Edge Tuning for AI Foundation
Models: A Multi-Agent Deep Reinforcement Learning Approach [10.47302625959368]
We present a groundbreaking paradigm integrating Mobile Edge Computing with foundation models, specifically designed to enhance local task performance on user equipment (UE)
Central to our approach is the innovative Emulator-Adapter architecture, segmenting the foundation model into two cohesive modules.
We introduce an advanced resource allocation mechanism that is fine-tuned to the needs of the Emulator-Adapter structure in decentralized settings.
arXiv Detail & Related papers (2023-10-26T15:47:51Z) - STORM: Efficient Stochastic Transformer based World Models for
Reinforcement Learning [82.03481509373037]
Recently, model-based reinforcement learning algorithms have demonstrated remarkable efficacy in visual input environments.
We introduce Transformer-based wORld Model (STORM), an efficient world model architecture that combines strong modeling and generation capabilities.
Storm achieves a mean human performance of $126.7%$ on the Atari $100$k benchmark, setting a new record among state-of-the-art methods.
arXiv Detail & Related papers (2023-10-14T16:42:02Z) - ZhiJian: A Unifying and Rapidly Deployable Toolbox for Pre-trained Model
Reuse [59.500060790983994]
This paper introduces ZhiJian, a comprehensive and user-friendly toolbox for model reuse, utilizing the PyTorch backend.
ZhiJian presents a novel paradigm that unifies diverse perspectives on model reuse, encompassing target architecture construction with PTM, tuning target model with PTM, and PTM-based inference.
arXiv Detail & Related papers (2023-08-17T19:12:13Z) - Learning Environment Models with Continuous Stochastic Dynamics [0.0]
We aim to provide insights into the decisions faced by the agent by learning an automaton model of environmental behavior under the control of an agent.
In this work, we raise the capabilities of automata learning such that it is possible to learn models for environments that have complex and continuous dynamics.
We apply our automata learning framework on popular RL benchmarking environments in the OpenAI Gym, including LunarLander, CartPole, Mountain Car, and Acrobot.
arXiv Detail & Related papers (2023-06-29T12:47:28Z) - Sim2real for Reinforcement Learning Driven Next Generation Networks [4.29590751118341]
Reinforcement Learning (RL) models are regarded as the key to solving RAN-related multi-objective optimization problems.
One of the main reasons is the modelling gap between the simulation and the real environment, which could make the RL agent trained by simulation ill-equipped for the real environment.
This article brings to the fore the sim2real challenge within the context of Open RAN (O-RAN)
Several use cases are presented to exemplify and demonstrate failure modes of the simulations trained RL model in real environments.
arXiv Detail & Related papers (2022-06-08T12:40:24Z) - Multitask Adaptation by Retrospective Exploration with Learned World
Models [77.34726150561087]
We propose a meta-learned addressing model called RAMa that provides training samples for the MBRL agent taken from task-agnostic storage.
The model is trained to maximize the expected agent's performance by selecting promising trajectories solving prior tasks from the storage.
arXiv Detail & Related papers (2021-10-25T20:02:57Z) - GEM: Group Enhanced Model for Learning Dynamical Control Systems [78.56159072162103]
We build effective dynamical models that are amenable to sample-based learning.
We show that learning the dynamics on a Lie algebra vector space is more effective than learning a direct state transition model.
This work sheds light on a connection between learning of dynamics and Lie group properties, which opens doors for new research directions.
arXiv Detail & Related papers (2021-04-07T01:08:18Z) - Bellman: A Toolbox for Model-Based Reinforcement Learning in TensorFlow [14.422129911404472]
Bellman aims to fill this gap and introduces the first thoroughly designed and tested model-based RL toolbox.
Our modular approach enables to combine a wide range of environment models with generic model-based agent classes that recover state-of-the-art algorithms.
arXiv Detail & Related papers (2021-03-26T11:32:27Z) - Learning Discrete Energy-based Models via Auxiliary-variable Local
Exploration [130.89746032163106]
We propose ALOE, a new algorithm for learning conditional and unconditional EBMs for discrete structured data.
We show that the energy function and sampler can be trained efficiently via a new variational form of power iteration.
We present an energy model guided fuzzer for software testing that achieves comparable performance to well engineered fuzzing engines like libfuzzer.
arXiv Detail & Related papers (2020-11-10T19:31:29Z) - Quantitatively Assessing the Benefits of Model-driven Development in
Agent-based Modeling and Simulation [80.49040344355431]
This paper compares the use of MDD and ABMS platforms in terms of effort and developer mistakes.
The obtained results show that MDD4ABMS requires less effort to develop simulations with similar (sometimes better) design quality than NetLogo.
arXiv Detail & Related papers (2020-06-15T23:29:04Z) - Model-based actor-critic: GAN (model generator) + DRL (actor-critic) =>
AGI [0.0]
We propose adding an (generative/predictive) environment model to the actor-critic (model-free) architecture.
The proposed AI model is similar to (model-free) DDPG and therefore it's called model-based DDPG.
Our initial limited experiments show that DRL and GAN in model-based actor-critic results in an incremental goal-driven intellignce required to solve each task with similar performance to (model-free) DDPG.
arXiv Detail & Related papers (2020-04-04T02:05:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.