Orchestration of Emulator Assisted Mobile Edge Tuning for AI Foundation
Models: A Multi-Agent Deep Reinforcement Learning Approach
- URL: http://arxiv.org/abs/2310.17492v1
- Date: Thu, 26 Oct 2023 15:47:51 GMT
- Title: Orchestration of Emulator Assisted Mobile Edge Tuning for AI Foundation
Models: A Multi-Agent Deep Reinforcement Learning Approach
- Authors: Wenhan Yu, Terence Jie Chua, Jun Zhao
- Abstract summary: We present a groundbreaking paradigm integrating Mobile Edge Computing with foundation models, specifically designed to enhance local task performance on user equipment (UE)
Central to our approach is the innovative Emulator-Adapter architecture, segmenting the foundation model into two cohesive modules.
We introduce an advanced resource allocation mechanism that is fine-tuned to the needs of the Emulator-Adapter structure in decentralized settings.
- Score: 10.47302625959368
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The efficient deployment and fine-tuning of foundation models are pivotal in
contemporary artificial intelligence. In this study, we present a
groundbreaking paradigm integrating Mobile Edge Computing (MEC) with foundation
models, specifically designed to enhance local task performance on user
equipment (UE). Central to our approach is the innovative Emulator-Adapter
architecture, segmenting the foundation model into two cohesive modules. This
design not only conserves computational resources but also ensures adaptability
and fine-tuning efficiency for downstream tasks. Additionally, we introduce an
advanced resource allocation mechanism that is fine-tuned to the needs of the
Emulator-Adapter structure in decentralized settings. To address the challenges
presented by this system, we employ a hybrid multi-agent Deep Reinforcement
Learning (DRL) strategy, adept at handling mixed discrete-continuous action
spaces, ensuring dynamic and optimal resource allocations. Our comprehensive
simulations and validations underscore the practical viability of our approach,
demonstrating its robustness, efficiency, and scalability. Collectively, this
work offers a fresh perspective on deploying foundation models and balancing
computational efficiency with task proficiency.
Related papers
- DSMoE: Matrix-Partitioned Experts with Dynamic Routing for Computation-Efficient Dense LLMs [70.91804882618243]
This paper proposes DSMoE, a novel approach that achieves sparsification by partitioning pre-trained FFN layers into computational blocks.
We implement adaptive expert routing using sigmoid activation and straight-through estimators, enabling tokens to flexibly access different aspects of model knowledge.
Experiments on LLaMA models demonstrate that under equivalent computational constraints, DSMoE achieves superior performance compared to existing pruning and MoE approaches.
arXiv Detail & Related papers (2025-02-18T02:37:26Z) - Task Offloading in Vehicular Edge Computing using Deep Reinforcement Learning: A Survey [9.21746609806009]
We explore the potential of Reinforcement Learning (RL) and Deep Reinforcement Learning (DRL) frameworks to optimize computational offloading through adaptive, real-time decision-making.
The paper focuses on key aspects such as standardized learning models, optimized reward structures, and collaborative multi-agent systems, aiming to advance the understanding and application of DRL in vehicular networks.
arXiv Detail & Related papers (2025-02-10T19:02:20Z) - EdgeMLBalancer: A Self-Adaptive Approach for Dynamic Model Switching on Resource-Constrained Edge Devices [0.0]
Machine learning on edge devices has enabled real-time AI applications in resource-constrained environments.
Existing solutions for managing computational resources often focus narrowly on accuracy or energy efficiency.
We propose a self-adaptive approach that optimize CPU utilization and resource management on edge devices.
arXiv Detail & Related papers (2025-02-10T14:11:29Z) - A Survey on Inference Optimization Techniques for Mixture of Experts Models [50.40325411764262]
Large-scale Mixture of Experts (MoE) models offer enhanced model capacity and computational efficiency through conditional computation.
deploying and running inference on these models presents significant challenges in computational resources, latency, and energy efficiency.
This survey analyzes optimization techniques for MoE models across the entire system stack.
arXiv Detail & Related papers (2024-12-18T14:11:15Z) - DNN Partitioning, Task Offloading, and Resource Allocation in Dynamic Vehicular Networks: A Lyapunov-Guided Diffusion-Based Reinforcement Learning Approach [49.56404236394601]
We formulate the problem of joint DNN partitioning, task offloading, and resource allocation in Vehicular Edge Computing.
Our objective is to minimize the DNN-based task completion time while guaranteeing the system stability over time.
We propose a Multi-Agent Diffusion-based Deep Reinforcement Learning (MAD2RL) algorithm, incorporating the innovative use of diffusion models.
arXiv Detail & Related papers (2024-06-11T06:31:03Z) - Machine Learning Insides OptVerse AI Solver: Design Principles and
Applications [74.67495900436728]
We present a comprehensive study on the integration of machine learning (ML) techniques into Huawei Cloud's OptVerse AI solver.
We showcase our methods for generating complex SAT and MILP instances utilizing generative models that mirror multifaceted structures of real-world problem.
We detail the incorporation of state-of-the-art parameter tuning algorithms which markedly elevate solver performance.
arXiv Detail & Related papers (2024-01-11T15:02:15Z) - A Multi-Head Ensemble Multi-Task Learning Approach for Dynamical
Computation Offloading [62.34538208323411]
We propose a multi-head ensemble multi-task learning (MEMTL) approach with a shared backbone and multiple prediction heads (PHs)
MEMTL outperforms benchmark methods in both the inference accuracy and mean square error without requiring additional training data.
arXiv Detail & Related papers (2023-09-02T11:01:16Z) - Reconfigurable Intelligent Surface Assisted Mobile Edge Computing with
Heterogeneous Learning Tasks [53.1636151439562]
Mobile edge computing (MEC) provides a natural platform for AI applications.
We present an infrastructure to perform machine learning tasks at an MEC with the assistance of a reconfigurable intelligent surface (RIS)
Specifically, we minimize the learning error of all participating users by jointly optimizing transmit power of mobile users, beamforming vectors of the base station, and the phase-shift matrix of the RIS.
arXiv Detail & Related papers (2020-12-25T07:08:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.