E(n) Equivariant Graph Neural Networks
- URL: http://arxiv.org/abs/2102.09844v1
- Date: Fri, 19 Feb 2021 10:25:33 GMT
- Title: E(n) Equivariant Graph Neural Networks
- Authors: Victor Garcia Satorras, Emiel Hoogeboom, Max Welling
- Abstract summary: This paper introduces a new model to learn graph neural networks equivariant to rotations, translations, reflections and permutations called E(n)-Equivariant Graph Neural Networks (EGNNs)
In contrast with existing methods, our work does not require computationally expensive higher-order representations in intermediate layers while it still achieves competitive or better performance.
- Score: 86.75170631724548
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper introduces a new model to learn graph neural networks equivariant
to rotations, translations, reflections and permutations called
E(n)-Equivariant Graph Neural Networks (EGNNs). In contrast with existing
methods, our work does not require computationally expensive higher-order
representations in intermediate layers while it still achieves competitive or
better performance. In addition, whereas existing methods are limited to
equivariance on 3 dimensional spaces, our model is easily scaled to
higher-dimensional spaces. We demonstrate the effectiveness of our method on
dynamical systems modelling, representation learning in graph autoencoders and
predicting molecular properties.
Related papers
- Enhancing lattice kinetic schemes for fluid dynamics with Lattice-Equivariant Neural Networks [79.16635054977068]
We present a new class of equivariant neural networks, dubbed Lattice-Equivariant Neural Networks (LENNs)
Our approach develops within a recently introduced framework aimed at learning neural network-based surrogate models Lattice Boltzmann collision operators.
Our work opens towards practical utilization of machine learning-augmented Lattice Boltzmann CFD in real-world simulations.
arXiv Detail & Related papers (2024-05-22T17:23:15Z) - Graph Neural Networks for Learning Equivariant Representations of Neural Networks [55.04145324152541]
We propose to represent neural networks as computational graphs of parameters.
Our approach enables a single model to encode neural computational graphs with diverse architectures.
We showcase the effectiveness of our method on a wide range of tasks, including classification and editing of implicit neural representations.
arXiv Detail & Related papers (2024-03-18T18:01:01Z) - Equivariant Graph Neural Operator for Modeling 3D Dynamics [148.98826858078556]
We propose Equivariant Graph Neural Operator (EGNO) to directly models dynamics as trajectories instead of just next-step prediction.
EGNO explicitly learns the temporal evolution of 3D dynamics where we formulate the dynamics as a function over time and learn neural operators to approximate it.
Comprehensive experiments in multiple domains, including particle simulations, human motion capture, and molecular dynamics, demonstrate the significantly superior performance of EGNO against existing methods.
arXiv Detail & Related papers (2024-01-19T21:50:32Z) - E($3$) Equivariant Graph Neural Networks for Particle-Based Fluid
Mechanics [2.1401663582288144]
We demonstrate that equivariant graph neural networks have the potential to learn more accurate dynamic-interaction models.
We benchmark two well-studied fluid flow systems, namely the 3D decaying Taylor-Green vortex and the 3D reverse Poiseuille flow.
arXiv Detail & Related papers (2023-03-31T21:56:35Z) - Spatial Attention Kinetic Networks with E(n)-Equivariance [0.951828574518325]
Neural networks that are equivariant to rotations, translations, reflections, and permutations on n-dimensional geometric space have shown promise in physical modeling.
We propose a simple alternative functional form that uses neurally parametrized linear combinations of edge vectors to achieve equivariance.
We design spatial attention kinetic networks with E(n)-equivariance, or SAKE, which are competitive in many-body system modeling tasks while being significantly faster.
arXiv Detail & Related papers (2023-01-21T05:14:29Z) - Spiking Variational Graph Auto-Encoders for Efficient Graph
Representation Learning [10.65760757021534]
We propose an SNN-based deep generative method, namely the Spiking Variational Graph Auto-Encoders (S-VGAE) for efficient graph representation learning.
We conduct link prediction experiments on multiple benchmark graph datasets, and the results demonstrate that our model consumes significantly lower energy with the performances superior or comparable to other ANN- and SNN-based methods for graph representation learning.
arXiv Detail & Related papers (2022-10-24T12:54:41Z) - Equivariant vector field network for many-body system modeling [65.22203086172019]
Equivariant Vector Field Network (EVFN) is built on a novel equivariant basis and the associated scalarization and vectorization layers.
We evaluate our method on predicting trajectories of simulated Newton mechanics systems with both full and partially observed data.
arXiv Detail & Related papers (2021-10-26T14:26:25Z) - Hyperbolic Variational Graph Neural Network for Modeling Dynamic Graphs [77.33781731432163]
We learn dynamic graph representation in hyperbolic space, for the first time, which aims to infer node representations.
We present a novel Hyperbolic Variational Graph Network, referred to as HVGNN.
In particular, to model the dynamics, we introduce a Temporal GNN (TGNN) based on a theoretically grounded time encoding approach.
arXiv Detail & Related papers (2021-04-06T01:44:15Z) - Parameterized Hypercomplex Graph Neural Networks for Graph
Classification [1.1852406625172216]
We develop graph neural networks that leverage the properties of hypercomplex feature transformation.
In particular, in our proposed class of models, the multiplication rule specifying the algebra itself is inferred from the data during training.
We test our proposed hypercomplex GNN on several open graph benchmark datasets and show that our models reach state-of-the-art performance.
arXiv Detail & Related papers (2021-03-30T18:01:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.