Hyperbolic Variational Graph Neural Network for Modeling Dynamic Graphs
- URL: http://arxiv.org/abs/2104.02228v1
- Date: Tue, 6 Apr 2021 01:44:15 GMT
- Title: Hyperbolic Variational Graph Neural Network for Modeling Dynamic Graphs
- Authors: Li Sun, Zhongbao Zhang, Jiawei Zhang, Feiyang Wang, Hao Peng, Sen Su
and Philip S. Yu
- Abstract summary: We learn dynamic graph representation in hyperbolic space, for the first time, which aims to infer node representations.
We present a novel Hyperbolic Variational Graph Network, referred to as HVGNN.
In particular, to model the dynamics, we introduce a Temporal GNN (TGNN) based on a theoretically grounded time encoding approach.
- Score: 77.33781731432163
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Learning representations for graphs plays a critical role in a wide spectrum
of downstream applications. In this paper, we summarize the limitations of the
prior works in three folds: representation space, modeling dynamics and
modeling uncertainty. To bridge this gap, we propose to learn dynamic graph
representation in hyperbolic space, for the first time, which aims to infer
stochastic node representations. Working with hyperbolic space, we present a
novel Hyperbolic Variational Graph Neural Network, referred to as HVGNN. In
particular, to model the dynamics, we introduce a Temporal GNN (TGNN) based on
a theoretically grounded time encoding approach. To model the uncertainty, we
devise a hyperbolic graph variational autoencoder built upon the proposed TGNN
to generate stochastic node representations of hyperbolic normal distributions.
Furthermore, we introduce a reparameterisable sampling algorithm for the
hyperbolic normal distribution to enable the gradient-based learning of HVGNN.
Extensive experiments show that HVGNN outperforms state-of-the-art baselines on
real-world datasets.
Related papers
- Gradient Transformation: Towards Efficient and Model-Agnostic Unlearning for Dynamic Graph Neural Networks [66.70786325911124]
Graph unlearning has emerged as an essential tool for safeguarding user privacy and mitigating the negative impacts of undesirable data.
With the increasing prevalence of DGNNs, it becomes imperative to investigate the implementation of dynamic graph unlearning.
We propose an effective, efficient, model-agnostic, and post-processing method to implement DGNN unlearning.
arXiv Detail & Related papers (2024-05-23T10:26:18Z) - Learning Coarse-Grained Dynamics on Graph [4.692217705215042]
We consider a Graph Neural Network (GNN) non-Markovian modeling framework to identify coarse-grained dynamical systems on graphs.
Our main idea is to systematically determine the GNN architecture by inspecting how the leading term of the Mori-Zwanzig memory term depends on the coarse-grained interaction coefficients that encode the graph topology.
arXiv Detail & Related papers (2024-05-15T13:25:34Z) - Input Snapshots Fusion for Scalable Discrete Dynamic Graph Nerual Networks [27.616083395612595]
We introduce an Input bf Snapshots bf Fusion based bf Dynamic bf Graph Neural Network (SFDyG)
By eliminating the partitioning of snapshots within the input window, we obtain a multi-graph (more than one edge between two nodes)
We propose a scalable three-step mini-batch training method and demonstrate its equivalence to full-batch training counterpart.
arXiv Detail & Related papers (2024-05-11T10:05:55Z) - Advective Diffusion Transformers for Topological Generalization in Graph
Learning [69.2894350228753]
We show how graph diffusion equations extrapolate and generalize in the presence of varying graph topologies.
We propose a novel graph encoder backbone, Advective Diffusion Transformer (ADiT), inspired by advective graph diffusion equations.
arXiv Detail & Related papers (2023-10-10T08:40:47Z) - Dynamic Causal Explanation Based Diffusion-Variational Graph Neural
Network for Spatio-temporal Forecasting [60.03169701753824]
We propose a novel Dynamic Diffusion-al Graph Neural Network (DVGNN) fortemporal forecasting.
The proposed DVGNN model outperforms state-of-the-art approaches and achieves outstanding Root Mean Squared Error result.
arXiv Detail & Related papers (2023-05-16T11:38:19Z) - ACE-HGNN: Adaptive Curvature Exploration Hyperbolic Graph Neural Network [72.16255675586089]
We propose an Adaptive Curvature Exploration Hyperbolic Graph NeuralNetwork named ACE-HGNN to adaptively learn the optimal curvature according to the input graph and downstream tasks.
Experiments on multiple real-world graph datasets demonstrate a significant and consistent performance improvement in model quality with competitive performance and good generalization ability.
arXiv Detail & Related papers (2021-10-15T07:18:57Z) - A Deep Latent Space Model for Graph Representation Learning [10.914558012458425]
We propose a Deep Latent Space Model (DLSM) for directed graphs to incorporate the traditional latent variable based generative model into deep learning frameworks.
Our proposed model consists of a graph convolutional network (GCN) encoder and a decoder, which are layer-wise connected by a hierarchical variational auto-encoder architecture.
Experiments on real-world datasets show that the proposed model achieves the state-of-the-art performances on both link prediction and community detection tasks.
arXiv Detail & Related papers (2021-06-22T12:41:19Z) - E(n) Equivariant Graph Neural Networks [86.75170631724548]
This paper introduces a new model to learn graph neural networks equivariant to rotations, translations, reflections and permutations called E(n)-Equivariant Graph Neural Networks (EGNNs)
In contrast with existing methods, our work does not require computationally expensive higher-order representations in intermediate layers while it still achieves competitive or better performance.
arXiv Detail & Related papers (2021-02-19T10:25:33Z) - Optimal Transport Graph Neural Networks [31.191844909335963]
Current graph neural network (GNN) architectures naively average or sum node embeddings into an aggregated graph representation.
We introduce OT-GNN, a model that computes graph embeddings using parametric prototypes.
arXiv Detail & Related papers (2020-06-08T14:57:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.