Symmetry allows for distinguishability in totally destructive
many-particle interference
- URL: http://arxiv.org/abs/2102.10017v1
- Date: Fri, 19 Feb 2021 16:37:19 GMT
- Title: Symmetry allows for distinguishability in totally destructive
many-particle interference
- Authors: Julian M\"unzberg, Christoph Dittel, Maxime Lebugle, Andreas
Buchleitner, Alexander Szameit, Gregor Weihs, Robert Keil
- Abstract summary: We investigate, in a four photon interference experiment in a laser-written waveguide structure, how symmetries control the suppression of many-body output events of a $J_x$ unitary.
We show that totally destructive interference does not require mutual indistinguishability between all, but only between symmetrically paired particles.
- Score: 52.77024349608834
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We investigate, in a four photon interference experiment in a laser-written
waveguide structure, how symmetries control the suppression of many-body output
events of a $J_x$ unitary. We show that totally destructive interference does
not require mutual indistinguishability between all, but only between
symmetrically paired particles, in agreement with recent theoretical
predictions. The outcome of the experiment is well described by a quantitative
simulation which accounts for higher order emission of the photon source,
imbalances in the scattering network, partial distinguishability, and photon
loss.
Related papers
- An Easier-To-Align Hong-Ou-Mandel Interference Demonstration [0.0]
Hong-Ou-Mandel interference experiment is a fundamental demonstration of nonclassical interference.
Experiment involves the interference of two photons reaching a symmetric beamsplitter.
arXiv Detail & Related papers (2023-01-17T20:12:03Z) - Entanglement of annihilation photons [141.5628276096321]
We present the results of a new experimental study of the quantum entanglement of photon pairs produced in positron-electron annihilation at rest.
Despite numerous measurements, there is still no experimental proof of the entanglement of photons.
arXiv Detail & Related papers (2022-10-14T08:21:55Z) - Quantum asymmetry and noisy multi-mode interferometry [55.41644538483948]
Quantum asymmetry is a physical resource which coincides with the amount of coherence between the eigenspaces of a generator.
We show that the asymmetry may emphincrease as a result of a emphdecrease of coherence inside a degenerate subspace.
arXiv Detail & Related papers (2021-07-23T07:30:57Z) - Augmenting the Sensing Performance of Entangled Photon Pairs through
Asymmetry [0.0]
We analyze theoretically and experimentally cases of asymmetric detection, stimulation, and loss within a quantum nonlinear interferometer of entangled pairs.
Our findings can improve the performance of setups that rely on direct detection of entangled pairs.
arXiv Detail & Related papers (2021-06-16T17:23:27Z) - Observation-dependent suppression and enhancement of two-photon
coincidences by tailored losses [68.8204255655161]
Hong-Ou-Mandel (HOM) effect can lead to a perfect suppression of two-particle coincidences between the output ports of a balanced beam splitter.
In this work, we demonstrate experimentally that the two-particle coincidence statistics of two bosons can instead be seamlessly tuned to substantial enhancement.
Our findings reveal a new approach to harnessing non-Hermitian settings for the manipulation of multi-particle quantum states.
arXiv Detail & Related papers (2021-05-12T06:47:35Z) - Quantum optical coherence: From linear to nonlinear interferometers [0.0]
We introduce a classification scheme that characterizes any interferometer based on the number of involved nonlinear elements.
We show that our experimental design can be useful in gaining insight into the properties of the various interferometeric setups containing different degrees of nonlinearity.
arXiv Detail & Related papers (2021-04-06T16:26:03Z) - Light-matter interactions near photonic Weyl points [68.8204255655161]
Weyl photons appear when two three-dimensional photonic bands with linear dispersion are degenerated at a single momentum point, labeled as Weyl point.
We analyze the dynamics of a single quantum emitter coupled to a Weyl photonic bath as a function of its detuning with respect to the Weyl point.
arXiv Detail & Related papers (2020-12-23T18:51:13Z) - Entanglement dynamics in dissipative photonic Mott insulators [62.997667081978825]
In spite of particle losses the quantum entanglement propagation exhibits a ballistic character with propagation speeds related to the differerent quasiparticles that are involved in the dynamics.
Our analysis reveals that photon dissipation has a strikingly asymmetric behavior in the two configurations with a much more dramatic role on the holon entanglement propagation than for the doublon case.
arXiv Detail & Related papers (2020-04-27T15:48:24Z) - Interfering distinguishable photons [0.0]
It is assumed that distinguishing information in the preparation, evolution or measurement of a system is sufficient to destroy interference.
For more than three independent quantum particles, distinguishability of the prepared states is not a sufficient condition for multiparticle interference to disappear.
arXiv Detail & Related papers (2020-01-22T16:25:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.