Multi-Domain Adaptation in Neural Machine Translation Through
Multidimensional Tagging
- URL: http://arxiv.org/abs/2102.10160v1
- Date: Fri, 19 Feb 2021 21:19:42 GMT
- Title: Multi-Domain Adaptation in Neural Machine Translation Through
Multidimensional Tagging
- Authors: Emmanouil Stergiadis, Satendra Kumar, Fedor Kovalev, Pavel Levin
- Abstract summary: We describe and empirically evaluate multidimensional tagging (MDT), a simple yet effective method for passing sentence-level information to the model.
Our human and BLEU evaluation results show that MDT can be applied to the problem of multi-domain adaptation and significantly reduce training costs without sacrificing the translation quality on any of the constituent domains.
- Score: 1.433758865948252
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Many modern Neural Machine Translation (NMT) systems are trained on
nonhomogeneous datasets with several distinct dimensions of variation (e.g.
domain, source, generation method, style, etc.). We describe and empirically
evaluate multidimensional tagging (MDT), a simple yet effective method for
passing sentence-level information to the model. Our human and BLEU evaluation
results show that MDT can be applied to the problem of multi-domain adaptation
and significantly reduce training costs without sacrificing the translation
quality on any of the constituent domains.
Related papers
- Investigating the potential of Sparse Mixtures-of-Experts for multi-domain neural machine translation [59.41178047749177]
We focus on multi-domain Neural Machine Translation, with the goal of developing efficient models which can handle data from various domains seen during training and are robust to domains unseen during training.
We hypothesize that Sparse Mixture-of-Experts (SMoE) models are a good fit for this task, as they enable efficient model scaling.
We conduct a series of experiments aimed at validating the utility of SMoE for the multi-domain scenario, and find that a straightforward width scaling of Transformer is a simpler and surprisingly more efficient approach in practice, and reaches the same performance level as SMoE.
arXiv Detail & Related papers (2024-07-01T09:45:22Z) - Unified Model Learning for Various Neural Machine Translation [63.320005222549646]
Existing machine translation (NMT) studies mainly focus on developing dataset-specific models.
We propose a versatile'' model, i.e., the Unified Model Learning for NMT (UMLNMT) that works with data from different tasks.
OurNMT results in substantial improvements over dataset-specific models with significantly reduced model deployment costs.
arXiv Detail & Related papers (2023-05-04T12:21:52Z) - Exploiting Language Relatedness in Machine Translation Through Domain
Adaptation Techniques [3.257358540764261]
We present a novel approach of using a scaled similarity score of sentences, especially for related languages based on a 5-gram KenLM language model.
Our approach succeeds in increasing 2 BLEU point on multi-domain approach, 3 BLEU point on fine-tuning for NMT and 2 BLEU point on iterative back-translation approach.
arXiv Detail & Related papers (2023-03-03T09:07:30Z) - Learning to Generalize to More: Continuous Semantic Augmentation for
Neural Machine Translation [50.54059385277964]
We present a novel data augmentation paradigm termed Continuous Semantic Augmentation (CsaNMT)
CsaNMT augments each training instance with an adjacency region that could cover adequate variants of literal expression under the same meaning.
arXiv Detail & Related papers (2022-04-14T08:16:28Z) - Non-Parametric Online Learning from Human Feedback for Neural Machine
Translation [54.96594148572804]
We study the problem of online learning with human feedback in the human-in-the-loop machine translation.
Previous methods require online model updating or additional translation memory networks to achieve high-quality performance.
We propose a novel non-parametric online learning method without changing the model structure.
arXiv Detail & Related papers (2021-09-23T04:26:15Z) - Uncertainty-Aware Balancing for Multilingual and Multi-Domain Neural
Machine Translation Training [58.72619374790418]
MultiUAT dynamically adjusts the training data usage based on the model's uncertainty.
We analyze the cross-domain transfer and show the deficiency of static and similarity based methods.
arXiv Detail & Related papers (2021-09-06T08:30:33Z) - Domain Adaptation and Multi-Domain Adaptation for Neural Machine
Translation: A Survey [9.645196221785694]
We focus on robust approaches to domain adaptation for Neural Machine Translation (NMT) models.
In particular, we look at the case where a system may need to translate sentences from multiple domains.
We highlight the benefits of domain adaptation and multi-domain adaptation techniques to other lines of NMT research.
arXiv Detail & Related papers (2021-04-14T16:21:37Z) - Unsupervised Neural Machine Translation for Low-Resource Domains via
Meta-Learning [27.86606560170401]
We present a novel meta-learning algorithm for unsupervised neural machine translation (UNMT)
We train the model to adapt to another domain by utilizing only a small amount of training data.
Our model surpasses a transfer learning-based approach by up to 2-4 BLEU scores.
arXiv Detail & Related papers (2020-10-18T17:54:13Z) - Target Conditioning for One-to-Many Generation [30.402378832810697]
We propose to explicitly model this one-to-many mapping by conditioning the decoder of a NMT model on a latent variable that represents the domain of target sentences.
At inference, we can generate diverse translations by decoding with different domains.
We assess the quality and diversity of translations generated by our model with several metrics, on three different datasets.
arXiv Detail & Related papers (2020-09-21T11:01:14Z) - A Simple Baseline to Semi-Supervised Domain Adaptation for Machine
Translation [73.3550140511458]
State-of-the-art neural machine translation (NMT) systems are data-hungry and perform poorly on new domains with no supervised data.
We propose a simple but effect approach to the semi-supervised domain adaptation scenario of NMT.
This approach iteratively trains a Transformer-based NMT model via three training objectives: language modeling, back-translation, and supervised translation.
arXiv Detail & Related papers (2020-01-22T16:42:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.