論文の概要: BSQ: Exploring Bit-Level Sparsity for Mixed-Precision Neural Network
Quantization
- arxiv url: http://arxiv.org/abs/2102.10462v1
- Date: Sat, 20 Feb 2021 22:37:41 GMT
- ステータス: 処理完了
- システム内更新日: 2021-02-24 09:02:46.134068
- Title: BSQ: Exploring Bit-Level Sparsity for Mixed-Precision Neural Network
Quantization
- Title(参考訳): BSQ:Mixed-Precision Neural Network Quantizationのためのビットレベルスパーシティの探索
- Authors: Huanrui Yang, Lin Duan, Yiran Chen, Hai Li
- Abstract要約: 混合精度量子化は、ディープニューラルネットワークの性能と圧縮率の最適なトレードオフを実現できる可能性がある。
従来の方法は、小さな手作業で設計された検索空間のみを調べるか、面倒なニューラルネットワークアーキテクチャ検索を使用して広大な検索空間を探索する。
本研究では、ビットレベルスパーシティを誘導する新たな角度から、混合精度量子化に取り組むためのビットレベルスパーシティ量子化(BSQ)を提案する。
- 参考スコア(独自算出の注目度): 32.770842274996774
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Mixed-precision quantization can potentially achieve the optimal tradeoff
between performance and compression rate of deep neural networks, and thus,
have been widely investigated. However, it lacks a systematic method to
determine the exact quantization scheme. Previous methods either examine only a
small manually-designed search space or utilize a cumbersome neural
architecture search to explore the vast search space. These approaches cannot
lead to an optimal quantization scheme efficiently. This work proposes
bit-level sparsity quantization (BSQ) to tackle the mixed-precision
quantization from a new angle of inducing bit-level sparsity. We consider each
bit of quantized weights as an independent trainable variable and introduce a
differentiable bit-sparsity regularizer. BSQ can induce all-zero bits across a
group of weight elements and realize the dynamic precision reduction, leading
to a mixed-precision quantization scheme of the original model. Our method
enables the exploration of the full mixed-precision space with a single
gradient-based optimization process, with only one hyperparameter to tradeoff
the performance and compression. BSQ achieves both higher accuracy and higher
bit reduction on various model architectures on the CIFAR-10 and ImageNet
datasets comparing to previous methods.
- Abstract(参考訳): 混合精度量子化はディープニューラルネットワークの性能と圧縮速度の最適なトレードオフを実現できる可能性があり、広く研究されている。
しかし、正確な量子化スキームを決定する体系的な方法が欠けている。
従来の方法は、小さな手作業で設計された検索空間のみを調べるか、面倒なニューラルネットワークアーキテクチャ検索を使用して広大な検索空間を探索する。
これらのアプローチは最適量子化スキームを効率的に導くことはできない。
本研究では、ビットレベルスパーシティを誘導する新たな角度から、混合精度量子化に取り組むためのビットレベルスパーシティ量子化(BSQ)を提案する。
我々は、各ビットの量子化重みを独立な訓練可能な変数と考え、微分可能なビットスパーシティ正規化器を導入する。
BSQは、重み要素のグループ間で全ゼロビットを誘導し、動的精度の低減を実現し、元のモデルの混合精度量子化スキームをもたらす。
1つのグラデーションベースの最適化プロセスで完全な混合精度空間を探索し、1つのハイパーパラメータだけでパフォーマンスと圧縮をトレードオフできます。
BSQは、CIFAR-10とImageNetデータセット上の様々なモデルアーキテクチャにおいて、以前の手法と比較して高い精度と高いビット削減を実現する。
関連論文リスト
- MixQuant: Mixed Precision Quantization with a Bit-width Optimization
Search [7.564770908909927]
量子化は、効率的なディープニューラルネットワーク(DNN)を作成する技術である
ラウンドオフ誤差に基づいて各層重みに対する最適な量子化ビット幅を求める検索アルゴリズムであるMixQuantを提案する。
我々は、MixQuantと最先端の量子化手法BRECQを組み合わせることで、BRECQ単独よりも優れた量子化モデル精度が得られることを示す。
論文 参考訳(メタデータ) (2023-09-29T15:49:54Z) - CSQ: Growing Mixed-Precision Quantization Scheme with Bi-level
Continuous Sparsification [51.81850995661478]
混合精度量子化はディープニューラルネットワーク(DNN)に広く応用されている
トレーニング中のビットレベル正規化とプルーニングに基づく動的精度調整の試みは、ノイズ勾配と不安定収束に悩まされている。
安定度を向上した混合精度量子化スキームを探索するビットレベル学習法である連続スカラー化量子化(CSQ)を提案する。
論文 参考訳(メタデータ) (2022-12-06T05:44:21Z) - SDQ: Stochastic Differentiable Quantization with Mixed Precision [46.232003346732064]
本稿では,MPQ戦略を自動的に学習できる新しい微分可能量子化(SDQ)手法を提案する。
最適なMPQ戦略が得られた後、エントロピーを意識したビン正規化と知識蒸留でネットワークを訓練する。
SDQは、最先端の混合データセット、または低いビット幅で単一精度の量子化よりも優れている。
論文 参考訳(メタデータ) (2022-06-09T12:38:18Z) - Post-training Quantization for Neural Networks with Provable Guarantees [9.58246628652846]
学習後ニューラルネットワーク量子化手法であるGPFQを,欲求経路追従機構に基づいて修正する。
単層ネットワークを定量化するためには、相対二乗誤差は本質的に重み数で線形に減衰する。
論文 参考訳(メタデータ) (2022-01-26T18:47:38Z) - Automatic Mixed-Precision Quantization Search of BERT [62.65905462141319]
BERTのような事前訓練された言語モデルは、様々な自然言語処理タスクにおいて顕著な効果を示している。
これらのモデルは通常、数百万のパラメータを含んでおり、リソースに制約のあるデバイスへの実践的なデプロイを妨げている。
本稿では,サブグループレベルでの量子化とプルーニングを同時に行うことができるBERT用に設計された混合精密量子化フレームワークを提案する。
論文 参考訳(メタデータ) (2021-12-30T06:32:47Z) - Mixed Precision Low-bit Quantization of Neural Network Language Models
for Speech Recognition [67.95996816744251]
長期間のメモリリカレントニューラルネットワーク(LSTM-RNN)とトランスフォーマーで表される最先端言語モデル(LM)は、実用アプリケーションではますます複雑で高価なものになりつつある。
現在の量子化法は、均一な精度に基づいており、量子化誤差に対するLMの異なる部分での様々な性能感度を考慮できない。
本稿では,新しい混合精度ニューラルネットワークLM量子化法を提案する。
論文 参考訳(メタデータ) (2021-11-29T12:24:02Z) - Cluster-Promoting Quantization with Bit-Drop for Minimizing Network
Quantization Loss [61.26793005355441]
クラスタ・プロモーティング・量子化(CPQ)は、ニューラルネットワークに最適な量子化グリッドを見つける。
DropBitsは、ニューロンの代わりにランダムにビットをドロップする標準のドロップアウト正規化を改訂する新しいビットドロップ技術である。
本手法を様々なベンチマークデータセットとネットワークアーキテクチャ上で実験的に検証する。
論文 参考訳(メタデータ) (2021-09-05T15:15:07Z) - Effective and Fast: A Novel Sequential Single Path Search for
Mixed-Precision Quantization [45.22093693422085]
混合精度量子化モデルは、異なる層の感度に応じて異なる量子化ビット精度にマッチし、優れた性能を達成できます。
いくつかの制約に従ってディープニューラルネットワークにおける各層の量子化ビット精度を迅速に決定することは難しい問題である。
混合精度量子化のための新規なシーケンシャルシングルパス探索(SSPS)法を提案する。
論文 参考訳(メタデータ) (2021-03-04T09:15:08Z) - Searching for Low-Bit Weights in Quantized Neural Networks [129.8319019563356]
低ビットの重みとアクティベーションを持つ量子ニューラルネットワークは、AIアクセラレータを開発する上で魅力的なものだ。
本稿では、任意の量子化ニューラルネットワークにおける離散重みを探索可能な変数とみなし、差分法を用いて正確に探索する。
論文 参考訳(メタデータ) (2020-09-18T09:13:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。