論文の概要: Targeted Attack against Deep Neural Networks via Flipping Limited Weight
Bits
- arxiv url: http://arxiv.org/abs/2102.10496v1
- Date: Sun, 21 Feb 2021 03:13:27 GMT
- ステータス: 処理完了
- システム内更新日: 2021-02-23 14:40:30.544510
- Title: Targeted Attack against Deep Neural Networks via Flipping Limited Weight
Bits
- Title(参考訳): Flipping Limited Weight Bitsによるディープニューラルネットワークに対するターゲット攻撃
- Authors: Jiawang Bai, Baoyuan Wu, Yong Zhang, Yiming Li, Zhifeng Li, Shu-Tao
Xia
- Abstract要約: 我々は,悪質な目的で展開段階におけるモデルパラメータを修飾する新しい攻撃パラダイムについて検討する。
私たちのゴールは、特定のサンプルをサンプル修正なしでターゲットクラスに誤分類することです。
整数プログラミングにおける最新の手法を利用することで、このBIP問題を連続最適化問題として等価に再構成する。
- 参考スコア(独自算出の注目度): 55.740716446995805
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: To explore the vulnerability of deep neural networks (DNNs), many attack
paradigms have been well studied, such as the poisoning-based backdoor attack
in the training stage and the adversarial attack in the inference stage. In
this paper, we study a novel attack paradigm, which modifies model parameters
in the deployment stage for malicious purposes. Specifically, our goal is to
misclassify a specific sample into a target class without any sample
modification, while not significantly reduce the prediction accuracy of other
samples to ensure the stealthiness. To this end, we formulate this problem as a
binary integer programming (BIP), since the parameters are stored as binary
bits ($i.e.$, 0 and 1) in the memory. By utilizing the latest technique in
integer programming, we equivalently reformulate this BIP problem as a
continuous optimization problem, which can be effectively and efficiently
solved using the alternating direction method of multipliers (ADMM) method.
Consequently, the flipped critical bits can be easily determined through
optimization, rather than using a heuristic strategy. Extensive experiments
demonstrate the superiority of our method in attacking DNNs.
- Abstract(参考訳): ディープニューラルネットワーク(DNN)の脆弱性を探るため、トレーニング段階における中毒ベースのバックドア攻撃や推論段階における敵攻撃など、多くの攻撃パラダイムが研究されている。
本稿では,悪質な目的で展開段階におけるモデルパラメータを修飾する新しい攻撃パラダイムについて検討する。
具体的には、特定のサンプルをサンプル修正なしにターゲットクラスに誤分類すると同時に、他のサンプルの予測精度を著しく低減し、ステルス性を確保することが目的である。
この目的のために、パラメータはメモリにバイナリビット($i.e.$, 0, 1)として保存されるため、この問題をバイナリ整数プログラミング(BIP)として定式化する。
整数プログラミングにおける最新の手法を利用することで、このBIP問題を連続最適化問題として等価に再構成し、乗算器の交互方向法(ADMM)を用いて効率よく効率的に解けるようにする。
したがって、反転した臨界ビットはヒューリスティックな戦略を用いるのではなく、最適化によって容易に決定することができる。
広範な実験は、DNN攻撃における我々の方法の優位性を示す。
関連論文リスト
- Wasserstein distributional robustness of neural networks [9.79503506460041]
ディープニューラルネットワークは敵攻撃(AA)に弱いことが知られている
画像認識タスクでは、元の小さな摂動によって画像が誤分類される可能性がある。
本稿では,Wassersteinの分散ロバスト最適化(DRO)技術を用いて問題を再検討し,新しいコントリビューションを得た。
論文 参考訳(メタデータ) (2023-06-16T13:41:24Z) - Versatile Weight Attack via Flipping Limited Bits [68.45224286690932]
本研究では,展開段階におけるモデルパラメータを変更する新たな攻撃パラダイムについて検討する。
有効性とステルスネスの目標を考慮し、ビットフリップに基づく重み攻撃を行うための一般的な定式化を提供する。
SSA(Single sample attack)とTSA(Singr sample attack)の2例を報告した。
論文 参考訳(メタデータ) (2022-07-25T03:24:58Z) - Distributed Adversarial Training to Robustify Deep Neural Networks at
Scale [100.19539096465101]
現在のディープニューラルネットワーク(DNN)は、入力に対する敵の摂動が分類を変更したり操作したりする敵の攻撃に対して脆弱である。
このような攻撃を防御するために、敵の訓練(AT)として知られる効果的なアプローチが、堅牢な訓練を緩和するために示されている。
複数のマシンにまたがって実装された大規模バッチ対逆トレーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2022-06-13T15:39:43Z) - Meta Adversarial Perturbations [66.43754467275967]
メタ逆境摂動(MAP)の存在を示す。
MAPは1段階の上昇勾配更新によって更新された後、自然画像を高い確率で誤分類する。
これらの摂動は画像に依存しないだけでなく、モデルに依存しないものであり、単一の摂動は見えないデータポイントと異なるニューラルネットワークアーキテクチャにまたがってうまく一般化される。
論文 参考訳(メタデータ) (2021-11-19T16:01:45Z) - Sparse and Imperceptible Adversarial Attack via a Homotopy Algorithm [93.80082636284922]
少数の敵対的攻撃は、数ピクセルを摂動するだけでディープ・ネットワーク(DNN)を騙すことができる。
近年の取り組みは、他の等級のl_infty摂動と組み合わせている。
本稿では,空間的・神経的摂動に対処するホモトピーアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-06-10T20:11:36Z) - Improving Transformation-based Defenses against Adversarial Examples
with First-order Perturbations [16.346349209014182]
研究によると、ニューラルネットワークは敵の攻撃を受けやすい。
これにより、ニューラルネットワークベースのインテリジェントシステムに対する潜在的な脅威が露呈する。
本稿では, 対向性強靭性を改善するために, 対向性摂動に対処する手法を提案する。
論文 参考訳(メタデータ) (2021-03-08T06:27:24Z) - Online Adversarial Attacks [57.448101834579624]
我々は、実世界のユースケースで見られる2つの重要な要素を強調し、オンライン敵攻撃問題を定式化する。
まず、オンライン脅威モデルの決定論的変種を厳格に分析する。
このアルゴリズムは、現在の最良の単一しきい値アルゴリズムよりも、$k=2$の競争率を確実に向上させる。
論文 参考訳(メタデータ) (2021-03-02T20:36:04Z) - Regularisation Can Mitigate Poisoning Attacks: A Novel Analysis Based on
Multiobjective Bilevel Optimisation [3.3181276611945263]
機械学習(ML)アルゴリズムは、アルゴリズムのパフォーマンスを意図的に劣化させるためにトレーニングデータの一部が操作される、中毒攻撃に対して脆弱である。
2レベル問題として定式化できる最適毒殺攻撃は、最悪のシナリオにおける学習アルゴリズムの堅牢性を評価するのに役立つ。
このアプローチはアルゴリズムの堅牢性に対する過度に悲観的な見方をもたらすことを示す。
論文 参考訳(メタデータ) (2020-02-28T19:46:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。