論文の概要: Safe Reinforcement Learning Using Robust Action Governor
- arxiv url: http://arxiv.org/abs/2102.10643v1
- Date: Sun, 21 Feb 2021 16:50:17 GMT
- ステータス: 処理完了
- システム内更新日: 2021-02-24 19:43:08.437499
- Title: Safe Reinforcement Learning Using Robust Action Governor
- Title(参考訳): robust action governorを用いた安全強化学習
- Authors: Yutong Li, Nan Li, H. Eric Tseng, Anouck Girard, Dimitar Filev, Ilya
Kolmanovsky
- Abstract要約: Reinforcement Learning(RL)は、基本的に試行錯誤学習の手順であり、探索と探索プロセス中に安全でない行動を引き起こす可能性があります。
本論文では, RLアルゴリズムとアドオン安全監視モジュールの統合に基づく安全RLの枠組みについて紹介する。
自動車用アダプティブクルーズ制御への適用を通じて,提案された安全RLフレームワークを例示する。
- 参考スコア(独自算出の注目度): 6.833157102376731
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Reinforcement Learning (RL) is essentially a trial-and-error learning
procedure which may cause unsafe behavior during the
exploration-and-exploitation process. This hinders the applications of RL to
real-world control problems, especially to those for safety-critical systems.
In this paper, we introduce a framework for safe RL that is based on
integration of an RL algorithm with an add-on safety supervision module, called
the Robust Action Governor (RAG), which exploits set-theoretic techniques and
online optimization to manage safety-related requirements during learning. We
illustrate this proposed safe RL framework through an application to automotive
adaptive cruise control.
- Abstract(参考訳): Reinforcement Learning(RL)は、基本的に試行錯誤学習の手順であり、探索と探索プロセス中に安全でない行動を引き起こす可能性があります。
これにより、RLの現実世界の制御問題、特に安全クリティカルシステムへの応用が妨げられる。
本論文では, RLアルゴリズムと, 学習中の安全関連要件を管理するために, セット理論的手法とオンライン最適化を応用したロバスト・アクション・ガバナー (RAG) と呼ばれる, アドオン安全監督モジュールを組み込んだ安全RLのフレームワークについて紹介する。
自動車用アダプティブクルーズ制御への適用を通じて,提案された安全RLフレームワークを例示する。
関連論文リスト
- ActSafe: Active Exploration with Safety Constraints for Reinforcement Learning [48.536695794883826]
本稿では,安全かつ効率的な探索のためのモデルベースRLアルゴリズムであるActSafeを提案する。
本稿では,ActSafeが学習中の安全性を保証しつつ,有限時間で準最適政策を得ることを示す。
さらに,最新のモデルベースRLの進歩に基づくActSafeの実用版を提案する。
論文 参考訳(メタデータ) (2024-10-12T10:46:02Z) - Safety through Permissibility: Shield Construction for Fast and Safe Reinforcement Learning [57.84059344739159]
シールドディング」は、強化学習(RL)の安全性を強制する一般的な手法である
安全と遮蔽構造に対処する新しい許容性に基づく枠組みを提案する。
論文 参考訳(メタデータ) (2024-05-29T18:00:21Z) - Reinforcement Learning with Adaptive Regularization for Safe Control of Critical Systems [2.126171264016785]
安全なRL探索を可能にするアルゴリズムである適応正規化(RL-AR)を提案する。
RL-ARは「フォーカスモジュール」を介してポリシーの組み合わせを行い、状態に応じて適切な組み合わせを決定する。
一連のクリティカルコントロールアプリケーションにおいて、RL-ARはトレーニング中の安全性を保証するだけでなく、モデルフリーなRLの標準との競合も得ることを示した。
論文 参考訳(メタデータ) (2024-04-23T16:35:14Z) - Approximate Model-Based Shielding for Safe Reinforcement Learning [83.55437924143615]
本稿では,学習したRLポリシーの性能を検証するための,原則的ルックアヘッド遮蔽アルゴリズムを提案する。
我々のアルゴリズムは他の遮蔽手法と異なり、システムの安全性関連力学の事前知識を必要としない。
我々は,国家依存型安全ラベルを持つアタリゲームにおいて,他の安全を意識したアプローチよりも優れた性能を示す。
論文 参考訳(メタデータ) (2023-07-27T15:19:45Z) - OmniSafe: An Infrastructure for Accelerating Safe Reinforcement Learning
Research [3.0536277689386453]
SafeRL研究の迅速化を目的とした基礎的枠組みを提案する。
我々のフレームワークは、異なるRLドメインにまたがるアルゴリズムの配列を含み、安全要素に重点を置いている。
論文 参考訳(メタデータ) (2023-05-16T09:22:14Z) - Safety Correction from Baseline: Towards the Risk-aware Policy in
Robotics via Dual-agent Reinforcement Learning [64.11013095004786]
本稿では,ベースラインと安全エージェントからなる二重エージェント型安全強化学習戦略を提案する。
このような分離されたフレームワークは、RLベースの制御に対して高い柔軟性、データ効率、リスク認識を可能にする。
提案手法は,難易度の高いロボットの移動・操作作業において,最先端の安全RLアルゴリズムより優れる。
論文 参考訳(メタデータ) (2022-12-14T03:11:25Z) - Evaluating Model-free Reinforcement Learning toward Safety-critical
Tasks [70.76757529955577]
本稿では、国家安全RLの観点から、この領域における先行研究を再考する。
安全最適化と安全予測を組み合わせた共同手法であるUnrolling Safety Layer (USL)を提案する。
この領域のさらなる研究を容易にするため、我々は関連するアルゴリズムを統一パイプラインで再現し、SafeRL-Kitに組み込む。
論文 参考訳(メタデータ) (2022-12-12T06:30:17Z) - Safe Reinforcement Learning using Data-Driven Predictive Control [0.5459797813771499]
安全でない動作のフィルタとして機能するデータ駆動型安全層を提案する。
安全層は、提案されたアクションが安全でない場合にRLエージェントをペナルティ化し、最も安全なものに置き換える。
本手法は,ロボットナビゲーション問題において,最先端の安全RL法よりも優れていることを示す。
論文 参考訳(メタデータ) (2022-11-20T17:10:40Z) - Model-Based Safe Reinforcement Learning with Time-Varying State and
Control Constraints: An Application to Intelligent Vehicles [13.40143623056186]
本稿では、時間変化状態と制御制約を持つ非線形システムの最適制御のための安全なRLアルゴリズムを提案する。
多段階の政策評価機構が提案され、時間変化による安全制約の下での政策の安全性リスクを予測し、安全更新を誘導する。
提案アルゴリズムは、シミュレーションされたセーフティガイム環境において、最先端のRLアルゴリズムよりも優れている。
論文 参考訳(メタデータ) (2021-12-18T10:45:31Z) - Safe Model-Based Reinforcement Learning Using Robust Control Barrier
Functions [43.713259595810854]
安全に対処する一般的なアプローチとして、安全層が追加され、RLアクションを安全な一連のアクションに投影する。
本稿では,モデルベースRLフレームワークにおけるロバスト制御バリア機能層としての安全性について述べる。
論文 参考訳(メタデータ) (2021-10-11T17:00:45Z) - Learning to be Safe: Deep RL with a Safety Critic [72.00568333130391]
安全なRLへの自然な第一のアプローチは、ポリシーの動作に関する制約を手動で指定することである。
我々は,タスクと環境の1つのセットで安全であることを学習し,その学習した直観を用いて将来の行動を制限することを提案する。
論文 参考訳(メタデータ) (2020-10-27T20:53:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。