論文の概要: Synthesizing Irreproducibility in Deep Networks
- arxiv url: http://arxiv.org/abs/2102.10696v1
- Date: Sun, 21 Feb 2021 21:51:28 GMT
- ステータス: 処理完了
- システム内更新日: 2021-02-23 14:51:35.442597
- Title: Synthesizing Irreproducibility in Deep Networks
- Title(参考訳): 深層ネットワークにおける合成再現性
- Authors: Robert R. Snapp and Gil I. Shamir
- Abstract要約: 現代のディープネットワークは非生産性に苦しむ(非決定性または不特定化とも呼ばれる)
単一の非線形性や非常に単純なデータやモデルであっても、不再現性が生じることを示す。
モデルの複雑さと非線形性の選択は、深いモデルを再現不能にする上で重要な役割を果たす。
- 参考スコア(独自算出の注目度): 2.28438857884398
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The success and superior performance of deep networks is spreading their
popularity and use to an increasing number of applications. Very recent works,
however, demonstrate that modern day deep networks suffer from
irreproducibility (also referred to as nondeterminism or underspecification).
Two or more models that are identical in architecture, structure, training
hyper-parameters, and parameters, and that are trained on exactly the same
training data, yield different predictions on individual previously unseen
examples. Thus, a model that performs well on controlled test data, may perform
in unexpected ways when deployed in the real world, whose data is expected to
be similar to the test data. We study simple synthetic models and data to
understand the origins of these problems. We show that even with a single
nonlinearity and for very simple data and models, irreproducibility occurs. Our
study demonstrates the effects of randomness in initialization, training data
shuffling window size, and activation functions on prediction
irreproducibility, even under very controlled synthetic data. While, as one
would expect, randomness in initialization and in shuffling the training
examples exacerbates the phenomenon, we show that model complexity and the
choice of nonlinearity also play significant roles in making deep models
irreproducible.
- Abstract(参考訳): ディープネットワークの成功と優れたパフォーマンスは、その人気と使用をますます多くのアプリケーションに広めています。
しかし、最近の研究では、現代のディープネットワークが再現性(非決定性または非特異性とも呼ばれる)に苦しんでいることが示されている。
アーキテクチャ、構造、トレーニングハイパーパラメータ、パラメータで同じで、まったく同じトレーニングデータでトレーニングされている2つ以上のモデルでは、これまで見つからなかった個々の例で異なる予測が得られます。
したがって、制御されたテストデータに対してうまく機能するモデルは、テストデータと似たデータが期待される現実世界にデプロイされた場合、予期せぬ方法で実行される可能性がある。
これらの問題の起源を理解するために、単純な合成モデルとデータを研究します。
単一の非線形性や非常に単純なデータやモデルであっても、不再現性が生じることを示す。
本研究は,初期化におけるランダム性,データシャッフルウィンドウサイズ,アクティベーション関数が,非常に制御された合成データにおいても予測不能な予測に与える影響を示す。
予測されるように、初期化におけるランダム性や訓練例のシャッフルは、この現象を悪化させるが、モデル複雑性と非線形性の選択は、深層モデルを作る際にも重要な役割を果たす。
関連論文リスト
- Strong Model Collapse [16.071600606637908]
本稿では,モデル崩壊現象の強い形態が存在することを示す。
以上の結果から,最小の合成データであっても,モデル崩壊につながる可能性が示唆された。
大規模言語モデルの学習における現在の傾向に沿ったアプローチであるモデルサイズの増加が,モデル崩壊を悪化させるか緩和させるかを検討する。
論文 参考訳(メタデータ) (2024-10-07T08:54:23Z) - Self-Consuming Generative Models with Curated Data Provably Optimize Human Preferences [20.629333587044012]
本研究では,データキュレーションが生成モデルの反復的再学習に与える影響について検討する。
報奨モデルに従ってデータをキュレートすると、反復的再訓練手順の期待報酬が最大になることを示す。
論文 参考訳(メタデータ) (2024-06-12T21:28:28Z) - How Bad is Training on Synthetic Data? A Statistical Analysis of Language Model Collapse [9.59833542807268]
モデル崩壊は、以前に訓練されたモデルから生成された合成データに基づいて新しいモデルが訓練されたときに起こる。
合成データのみを用いたトレーニングでは,モデル崩壊は回避できないことを示す。
モデル崩壊を回避できる合成データの最大量を推定する。
論文 参考訳(メタデータ) (2024-04-07T22:15:13Z) - Is Model Collapse Inevitable? Breaking the Curse of Recursion by Accumulating Real and Synthetic Data [49.73114504515852]
各世代の合成データによって元の実データを置き換えることは、モデル崩壊の傾向にあることを示す。
生成した実データと連続する合成データの蓄積は,モデル崩壊を回避することを実証する。
論文 参考訳(メタデータ) (2024-04-01T18:31:24Z) - Towards Theoretical Understandings of Self-Consuming Generative Models [56.84592466204185]
本稿では,自己消費ループ内で生成モデルを訓練する新たな課題に取り組む。
我々は,このトレーニングが将来のモデルで学習したデータ分布に与える影響を厳格に評価するための理論的枠組みを構築した。
カーネル密度推定の結果は,混合データトレーニングがエラー伝播に与える影響など,微妙な洞察を与える。
論文 参考訳(メタデータ) (2024-02-19T02:08:09Z) - Learning Defect Prediction from Unrealistic Data [57.53586547895278]
事前訓練されたコードのモデルは、コード理解と生成タスクに人気がある。
このようなモデルは大きい傾向があり、訓練データの総量を必要とする。
人工的に注入されたバグのある関数など、はるかに大きくてもより現実的なデータセットを持つモデルをトレーニングすることが一般的になった。
このようなデータで訓練されたモデルは、実際のプログラムでは性能が劣りながら、同様のデータでのみうまく機能する傾向にある。
論文 参考訳(メタデータ) (2023-11-02T01:51:43Z) - On the Stability of Iterative Retraining of Generative Models on their own Data [56.153542044045224]
混合データセットに対する生成モデルの訓練が与える影響について検討する。
まず、初期生成モデルがデータ分布を十分に近似する条件下で反復学習の安定性を実証する。
我々は、正規化フローと最先端拡散モデルを繰り返し訓練することにより、合成画像と自然画像の両方に関する我々の理論を実証的に検証する。
論文 参考訳(メタデータ) (2023-09-30T16:41:04Z) - Reconstructing Training Data from Model Gradient, Provably [68.21082086264555]
ランダムに選択されたパラメータ値で1つの勾配クエリからトレーニングサンプルを再構成する。
センシティブなトレーニングデータを示す証明可能な攻撃として、われわれの発見はプライバシーに対する深刻な脅威を示唆している。
論文 参考訳(メタデータ) (2022-12-07T15:32:22Z) - On the Efficacy of Adversarial Data Collection for Question Answering:
Results from a Large-Scale Randomized Study [65.17429512679695]
逆データ収集(ADC)では、人間の労働力がモデルとリアルタイムで対話し、誤った予測を誘発する例を作成しようとする。
ADCの直感的な魅力にも拘わらず、敵対的データセットのトレーニングがより堅牢なモデルを生成するかどうかは不明だ。
論文 参考訳(メタデータ) (2021-06-02T00:48:33Z) - Transfer learning suppresses simulation bias in predictive models built
from sparse, multi-modal data [15.587831925516957]
科学、工学、ビジネスにおける多くの問題は、ごくわずかな観察に基づく予測を必要とする。
堅牢な予測モデルを構築するには、特に設計空間が多次元である場合、これらのスパースデータをシミュレーションデータで拡張する必要がある。
ディープラーニングの最近の開発を組み合わせて、マルチモーダルデータからより堅牢な予測モデルを構築します。
論文 参考訳(メタデータ) (2021-04-19T23:28:32Z) - Forecasting Industrial Aging Processes with Machine Learning Methods [0.0]
我々は、従来のステートレスモデルとより複雑なリカレントニューラルネットワークを比較して、幅広いデータ駆動モデルを評価する。
以上の結果から,リカレントモデルでは,より大きなデータセットでトレーニングした場合,ほぼ完璧な予測が得られた。
論文 参考訳(メタデータ) (2020-02-05T13:06:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。