論文の概要: Improving Uncertainty Calibration via Prior Augmented Data
- arxiv url: http://arxiv.org/abs/2102.10803v1
- Date: Mon, 22 Feb 2021 07:02:37 GMT
- ステータス: 処理完了
- システム内更新日: 2021-02-24 00:30:19.726817
- Title: Improving Uncertainty Calibration via Prior Augmented Data
- Title(参考訳): 事前増強データによる不確実性キャリブレーションの改善
- Authors: Jeffrey Willette, Juho Lee, Sung Ju Hwang
- Abstract要約: ニューラルネットワークは、普遍関数近似器として機能することで、複雑なデータ分布から学習することに成功した。
彼らはしばしば予測に自信過剰であり、不正確で誤った確率的予測に繋がる。
本稿では,モデルが不当に過信である特徴空間の領域を探索し,それらの予測のエントロピーをラベルの以前の分布に対して条件的に高める手法を提案する。
- 参考スコア(独自算出の注目度): 56.88185136509654
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Neural networks have proven successful at learning from complex data
distributions by acting as universal function approximators. However, they are
often overconfident in their predictions, which leads to inaccurate and
miscalibrated probabilistic predictions. The problem of overconfidence becomes
especially apparent in cases where the test-time data distribution differs from
that which was seen during training. We propose a solution to this problem by
seeking out regions of feature space where the model is unjustifiably
overconfident, and conditionally raising the entropy of those predictions
towards that of the prior distribution of the labels. Our method results in a
better calibrated network and is agnostic to the underlying model structure, so
it can be applied to any neural network which produces a probability density as
an output. We demonstrate the effectiveness of our method and validate its
performance on both classification and regression problems, applying it to
recent probabilistic neural network models.
- Abstract(参考訳): ニューラルネットワークは、普遍関数近似器として機能することで、複雑なデータ分布から学習することに成功した。
しかし、それらはしばしば予測を過信しており、不正確で誤った確率的予測をもたらす。
テストタイムのデータ分布がトレーニング中に見られたものと異なる場合、過信の問題が特に明らかになります。
本稿では, モデルが不当に過信である特徴空間の領域を探索し, ラベルの事前分布に対する予測のエントロピーを条件的に高めることにより, この問題に対する解決策を提案する。
提案手法は, モデル構造に依存しない, キャリブレーションの良いネットワークを実現するため, 確率密度を出力として生成する任意のニューラルネットワークに適用できる。
本手法の有効性を実証し,最近の確率的ニューラルネットワークモデルに適用し,分類問題と回帰問題の両方においてその性能を検証する。
関連論文リスト
- Tractable Function-Space Variational Inference in Bayesian Neural
Networks [72.97620734290139]
ニューラルネットワークの予測不確かさを推定するための一般的なアプローチは、ネットワークパラメータに対する事前分布を定義することである。
本稿では,事前情報を組み込むスケーラブルな関数空間変動推論手法を提案する。
提案手法は,様々な予測タスクにおいて,最先端の不確実性評価と予測性能をもたらすことを示す。
論文 参考訳(メタデータ) (2023-12-28T18:33:26Z) - Uncertainty Quantification in Deep Neural Networks through Statistical
Inference on Latent Space [0.0]
ネットワークに供給されたデータポイントの潜在空間表現を利用して予測精度を評価するアルゴリズムを開発した。
一般的に使われている手法が大半が過信である合成データセットについて述べる。
対照的に,本手法は,不正確な予測を行うようなアウト・オブ・ディストリビューション・データ・ポイントを検出できるため,アウトレーヤの自動検出に役立てることができる。
論文 参考訳(メタデータ) (2023-05-18T09:52:06Z) - Confidence estimation of classification based on the distribution of the
neural network output layer [4.529188601556233]
現実の世界における予測モデルの適用を防ぐための最も一般的な問題の1つは一般化の欠如である。
ニューラルネットワーク分類モデルにより生成された特定の予測の不確かさを推定する新しい手法を提案する。
提案手法は,この予測に対応するロジット値の分布に基づいて,特定の予測の信頼性を推定する。
論文 参考訳(メタデータ) (2022-10-14T12:32:50Z) - Bayesian Neural Network Versus Ex-Post Calibration For Prediction
Uncertainty [0.2343856409260935]
ニューラルネットワークからの確率的予測は、分類中の予測の不確実性の原因となる。
実際には、ほとんどのデータセットは非確率的ニューラルネットワークでトレーニングされています。
キャリブレーションアプローチのもっともらしい代替手段は、予測分布を直接モデル化するベイズニューラルネットワークを使用することである。
論文 参考訳(メタデータ) (2022-09-29T07:22:19Z) - Uncertainty Modeling for Out-of-Distribution Generalization [56.957731893992495]
特徴統計を適切に操作することで、ディープラーニングモデルの一般化能力を向上させることができると論じる。
一般的な手法では、特徴統計を学習した特徴から測定された決定論的値とみなすことが多い。
我々は、学習中に合成された特徴統計を用いて、領域シフトの不確かさをモデル化することにより、ネットワークの一般化能力を向上させる。
論文 参考訳(メタデータ) (2022-02-08T16:09:12Z) - Conformal prediction for the design problem [72.14982816083297]
機械学習の現実的な展開では、次にテストすべきデータを選択するために予測アルゴリズムを使用します。
このような設定では、トレーニングデータとテストデータの間には、異なるタイプの分散シフトがある。
このような環境で予測の不確実性を定量化する手法を提案する。
論文 参考訳(メタデータ) (2022-02-08T02:59:12Z) - Dense Uncertainty Estimation [62.23555922631451]
本稿では,ニューラルネットワークと不確実性推定手法について検討し,正確な決定論的予測と確実性推定の両方を実現する。
本研究では,アンサンブルに基づく手法と生成モデルに基づく手法の2つの不確実性推定法について検討し,それらの長所と短所を,完全/半端/弱度に制御されたフレームワークを用いて説明する。
論文 参考訳(メタデータ) (2021-10-13T01:23:48Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
後続正則化に基づく近似ベイズ推定法を開発した。
前立腺癌の予後モデルを世界規模で導入する上で,本手法の有用性を実証する。
論文 参考訳(メタデータ) (2020-06-26T13:50:19Z) - A comprehensive study on the prediction reliability of graph neural
networks for virtual screening [0.0]
本稿では,モデルアーキテクチャ,正規化手法,損失関数が分類結果の予測性能および信頼性に与える影響について検討する。
その結果,高い成功率を達成するためには,正則化と推論手法の正しい選択が重要であることが明らかとなった。
論文 参考訳(メタデータ) (2020-03-17T10:13:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。