論文の概要: Joint Intent Detection And Slot Filling Based on Continual Learning
Model
- arxiv url: http://arxiv.org/abs/2102.10905v1
- Date: Mon, 22 Feb 2021 11:10:35 GMT
- ステータス: 処理完了
- システム内更新日: 2021-02-24 00:50:45.220430
- Title: Joint Intent Detection And Slot Filling Based on Continual Learning
Model
- Title(参考訳): 連続学習モデルに基づく関節インテント検出とスロット充填
- Authors: Yanfei Hui, Jianzong Wang, Ning Cheng, Fengying Yu, Tianbo Wu, Jing
Xiao
- Abstract要約: 連続学習関連モデル (CLIM) を提案し, 特徴の異なる意味情報を考察した。
実験結果はCLIMがATISおよびSnipsのスロット満ちることおよび意図の検出で達成することを示します。
- 参考スコア(独自算出の注目度): 18.961950574045648
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Slot filling and intent detection have become a significant theme in the
field of natural language understanding. Even though slot filling is
intensively associated with intent detection, the characteristics of the
information required for both tasks are different while most of those
approaches may not fully aware of this problem. In addition, balancing the
accuracy of two tasks effectively is an inevitable problem for the joint
learning model. In this paper, a Continual Learning Interrelated Model (CLIM)
is proposed to consider semantic information with different characteristics and
balance the accuracy between intent detection and slot filling effectively. The
experimental results show that CLIM achieves state-of-the-art performace on
slot filling and intent detection on ATIS and Snips.
- Abstract(参考訳): スロット充填とインテント検出は自然言語理解の分野で重要なテーマとなっている。
スロットフィリングはインテント検出と密接に関連しているが、両方のタスクに必要な情報の特徴は異なるが、これらのアプローチのほとんどはこの問題を十分に認識していない。
さらに、2つのタスクの精度を効果的にバランスさせることは、共同学習モデルにとって必然的な問題である。
本稿では,異なる特徴を持つ意味情報を考察し,意図検出とスロットフィリングの精度のバランスをとるために,CLIM(Continuous Learning Interrelated Model)を提案する。
実験結果から,CLIMは,ATISおよびSnipsにおけるスロット充填とインテント検出の最先端を実現していることがわかった。
関連論文リスト
- Gaussian Mixture Models for Affordance Learning using Bayesian Networks [50.18477618198277]
Affordancesはアクション、オブジェクト、エフェクト間の関係の基本的な記述である。
本稿では,世界を探究し,その感覚経験から自律的にこれらの余裕を学習するエンボディエージェントの問題にアプローチする。
論文 参考訳(メタデータ) (2024-02-08T22:05:45Z) - MISCA: A Joint Model for Multiple Intent Detection and Slot Filling with
Intent-Slot Co-Attention [9.414164374919029]
グラフに基づくジョイントモデルである最近の高度なアプローチは、まだ2つの潜在的な問題に直面している。
我々はMISCAというジョイントモデルを提案する。
我々のMISCAは、意図-スロットのコアテンション機構とラベルアテンション機構の基盤層を導入している。
論文 参考訳(メタデータ) (2023-12-10T03:38:41Z) - Joint Multiple Intent Detection and Slot Filling with Supervised
Contrastive Learning and Self-Distillation [4.123763595394021]
複数の意図の検出とスロットフィリングは、音声言語理解における基本的かつ重要なタスクである。
インテントを同時に検出し、スロットを抽出できるジョイントモデルが好ましい。
本稿では,これらの課題に対処して複数の意図の検出とスロットフィリングを行う手法を提案する。
論文 参考訳(メタデータ) (2023-08-28T15:36:33Z) - Slot Induction via Pre-trained Language Model Probing and Multi-level
Contrastive Learning [62.839109775887025]
トークンレベルのスロットアノテーションの明示的な知識なしでスロット境界を誘導することを目的としたスロットインジェクション(SI)タスク。
PLMから抽出した教師なし意味知識を活用するために、教師なし事前学習言語モデル(PLM)探索とコントラスト学習機構を活用することを提案する。
提案手法は,2つのNLUベンチマークデータセット上でトークンレベルの教師付きモデルとのギャップを埋めることができ,SIタスクに有効であることが示されている。
論文 参考訳(メタデータ) (2023-08-09T05:08:57Z) - Joint Salient Object Detection and Camouflaged Object Detection via
Uncertainty-aware Learning [47.253370009231645]
本稿では,SOD と Camouflaged Object Detection (COD) の矛盾する情報を探るため,不確実性を考慮した学習パイプラインを提案する。
我々の解決策は、最先端の性能と情報的不確実性の推定の両方につながる。
論文 参考訳(メタデータ) (2023-07-10T15:49:37Z) - Semantics-Depth-Symbiosis: Deeply Coupled Semi-Supervised Learning of
Semantics and Depth [83.94528876742096]
我々は,意味的セグメンテーションと深さ推定という2つの密なタスクのMTL問題に取り組み,クロスチャネル注意モジュール(CCAM)と呼ばれる新しいアテンションモジュールを提案する。
次に,AffineMixと呼ばれる予測深度を用いた意味分節タスクのための新しいデータ拡張と,ColorAugと呼ばれる予測セマンティクスを用いた単純な深度増分を定式化する。
最後に,提案手法の性能向上をCityscapesデータセットで検証し,深度と意味に基づく半教師付きジョイントモデルにおける最先端結果の実現を支援する。
論文 参考訳(メタデータ) (2022-06-21T17:40:55Z) - Bi-directional Joint Neural Networks for Intent Classification and Slot
Filling [5.3361357265365035]
目的分類とスロットフィリングのための双方向ジョイントモデルを提案する。
本モデルでは,意図分類の精度,スロットフィリングF1,文レベルのセマンティックフレームの精度を大幅に向上させる。
論文 参考訳(メタデータ) (2022-02-26T06:35:21Z) - Few-Shot Fine-Grained Action Recognition via Bidirectional Attention and
Contrastive Meta-Learning [51.03781020616402]
現実世界のアプリケーションで特定のアクション理解の需要が高まっているため、きめ細かいアクション認識が注目を集めている。
そこで本研究では,各クラスに付与されるサンプル数だけを用いて,新規なきめ細かい動作を認識することを目的とした,数発のきめ細かな動作認識問題を提案する。
粒度の粗い動作では進展があったが、既存の数発の認識手法では、粒度の細かい動作を扱う2つの問題に遭遇する。
論文 参考訳(メタデータ) (2021-08-15T02:21:01Z) - Generalized Zero-shot Intent Detection via Commonsense Knowledge [5.398580049917152]
学習データ不足の問題を克服するために,教師なしの方法でコモンセンス知識を活用する意図検出モデル RIDE を提案する。
RIDEは、発話と意図ラベルの間の深い意味的関係をキャプチャする、堅牢で一般化可能な関係メタ機能を計算する。
広範に使用されている3つのインテント検出ベンチマークに関する広範囲な実験的分析により、関係メタ機能により、目に見えないインテントと見えないインテントの両方を検出する精度が著しく向上することが示された。
論文 参考訳(メタデータ) (2021-02-04T23:36:41Z) - Robust Learning Through Cross-Task Consistency [92.42534246652062]
クロスタスク整合性を用いた学習向上のための,広く適用可能な完全計算手法を提案する。
クロスタスク一貫性による学習は,より正確な予測と,アウト・オブ・ディストリビューション・インプットの一般化につながることを観察する。
論文 参考訳(メタデータ) (2020-06-07T09:24:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。