Coherence of Working Memory Study Between Deep Neural Network and
Neurophysiology
- URL: http://arxiv.org/abs/2102.10994v1
- Date: Sat, 6 Feb 2021 09:09:57 GMT
- Title: Coherence of Working Memory Study Between Deep Neural Network and
Neurophysiology
- Authors: Yurui Ming
- Abstract summary: This work investigates the potential coherent correspondence between the region-of-interest for deep neural networks to explore.
The attention mechanism induced by global average pooling (GAP) is applied to a public EEG dataset of working memory.
The result shows the alignment of ROIs from different research disciplines.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The auto feature extraction capability of deep neural networks (DNN) endows
them the potentiality for analysing complicated electroencephalogram (EEG) data
captured from brain functionality research. This work investigates the
potential coherent correspondence between the region-of-interest (ROI) for DNN
to explore, and ROI for conventional neurophysiological oriented methods to
work with, exemplified in the case of working memory study. The attention
mechanism induced by global average pooling (GAP) is applied to a public EEG
dataset of working memory, to unveil these coherent ROIs via a classification
problem. The result shows the alignment of ROIs from different research
disciplines. This work asserts the confidence and promise of utilizing DNN for
EEG data analysis, albeit in lack of the interpretation to network operations.
Related papers
- Interpretable Spatio-Temporal Embedding for Brain Structural-Effective Network with Ordinary Differential Equation [56.34634121544929]
In this study, we first construct the brain-effective network via the dynamic causal model.
We then introduce an interpretable graph learning framework termed Spatio-Temporal Embedding ODE (STE-ODE)
This framework incorporates specifically designed directed node embedding layers, aiming at capturing the dynamic interplay between structural and effective networks.
arXiv Detail & Related papers (2024-05-21T20:37:07Z) - PTGB: Pre-Train Graph Neural Networks for Brain Network Analysis [39.16619345610152]
We propose PTGB, a GNN pre-training framework that captures intrinsic brain network structures, regardless of clinical outcomes, and is easily adaptable to various downstream tasks.
PTGB comprises two key components: (1) an unsupervised pre-training technique designed specifically for brain networks, which enables learning from large-scale datasets without task-specific labels; (2) a data-driven parcellation atlas mapping pipeline that facilitates knowledge transfer across datasets with different ROI systems.
arXiv Detail & Related papers (2023-05-20T21:07:47Z) - Transferability of coVariance Neural Networks and Application to
Interpretable Brain Age Prediction using Anatomical Features [119.45320143101381]
Graph convolutional networks (GCN) leverage topology-driven graph convolutional operations to combine information across the graph for inference tasks.
We have studied GCNs with covariance matrices as graphs in the form of coVariance neural networks (VNNs)
VNNs inherit the scale-free data processing architecture from GCNs and here, we show that VNNs exhibit transferability of performance over datasets whose covariance matrices converge to a limit object.
arXiv Detail & Related papers (2023-05-02T22:15:54Z) - Learning Task-Aware Effective Brain Connectivity for fMRI Analysis with
Graph Neural Networks [28.460737693330245]
We propose TBDS, an end-to-end framework based on underlineTask-aware underlineBrain connectivity underlineDAG for fMRI analysis.
The key component of TBDS is the brain network generator which adopts a DAG learning approach to transform the raw time-series into task-aware brain connectivities.
Comprehensive experiments on two fMRI datasets demonstrate the efficacy of TBDS.
arXiv Detail & Related papers (2022-11-01T03:59:54Z) - fMRI from EEG is only Deep Learning away: the use of interpretable DL to
unravel EEG-fMRI relationships [68.8204255655161]
We present an interpretable domain grounded solution to recover the activity of several subcortical regions from multichannel EEG data.
We recover individual spatial and time-frequency patterns of scalp EEG predictive of the hemodynamic signal in the subcortical nuclei.
arXiv Detail & Related papers (2022-10-23T15:11:37Z) - Functional2Structural: Cross-Modality Brain Networks Representation
Learning [55.24969686433101]
Graph mining on brain networks may facilitate the discovery of novel biomarkers for clinical phenotypes and neurodegenerative diseases.
We propose a novel graph learning framework, known as Deep Signed Brain Networks (DSBN), with a signed graph encoder.
We validate our framework on clinical phenotype and neurodegenerative disease prediction tasks using two independent, publicly available datasets.
arXiv Detail & Related papers (2022-05-06T03:45:36Z) - Deep Reinforcement Learning Guided Graph Neural Networks for Brain
Network Analysis [61.53545734991802]
We propose a novel brain network representation framework, namely BN-GNN, which searches for the optimal GNN architecture for each brain network.
Our proposed BN-GNN improves the performance of traditional GNNs on different brain network analysis tasks.
arXiv Detail & Related papers (2022-03-18T07:05:27Z) - Modeling Spatio-Temporal Dynamics in Brain Networks: A Comparison of
Graph Neural Network Architectures [0.5033155053523041]
Graph neural networks (GNNs) provide a possibility to interpret new structured graph signals.
We show that by learning localized functional interactions on the substrate, GNN based approaches are able to robustly scale to large network studies.
arXiv Detail & Related papers (2021-12-08T12:57:13Z) - Towards Interaction Detection Using Topological Analysis on Neural
Networks [55.74562391439507]
In neural networks, any interacting features must follow a strongly weighted connection to common hidden units.
We propose a new measure for quantifying interaction strength, based upon the well-received theory of persistent homology.
A Persistence Interaction detection(PID) algorithm is developed to efficiently detect interactions.
arXiv Detail & Related papers (2020-10-25T02:15:24Z) - A Graph Neural Network Framework for Causal Inference in Brain Networks [0.3392372796177108]
A central question in neuroscience is how self-organizing dynamic interactions in the brain emerge on their relatively static backbone.
We present a graph neural network (GNN) framework to describe functional interactions based on structural anatomical layout.
We show that GNNs are able to capture long-term dependencies in data and also scale up to the analysis of large-scale networks.
arXiv Detail & Related papers (2020-10-14T15:01:21Z) - Pooling Regularized Graph Neural Network for fMRI Biomarker Analysis [29.489129970039873]
A promising approach to identify the salient regions is using Graph Neural Networks (GNNs)
We propose an interpretable GNN framework with a novel salient region selection mechanism to determine neurological brain biomarkers associated with disorders.
We apply the PR-GNN framework on a Biopoint Autism Spectral Disorder (ASD) fMRI dataset.
arXiv Detail & Related papers (2020-07-29T04:19:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.