Modeling Spatio-Temporal Dynamics in Brain Networks: A Comparison of
Graph Neural Network Architectures
- URL: http://arxiv.org/abs/2112.04266v1
- Date: Wed, 8 Dec 2021 12:57:13 GMT
- Title: Modeling Spatio-Temporal Dynamics in Brain Networks: A Comparison of
Graph Neural Network Architectures
- Authors: Simon Wein, Alina Sch\"uller, Ana Maria Tom\'e, Wilhelm M. Malloni,
Mark W. Greenlee, Elmar W. Lang
- Abstract summary: Graph neural networks (GNNs) provide a possibility to interpret new structured graph signals.
We show that by learning localized functional interactions on the substrate, GNN based approaches are able to robustly scale to large network studies.
- Score: 0.5033155053523041
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Comprehending the interplay between spatial and temporal characteristics of
neural dynamics can contribute to our understanding of information processing
in the human brain. Graph neural networks (GNNs) provide a new possibility to
interpret graph structured signals like those observed in complex brain
networks. In our study we compare different spatio-temporal GNN architectures
and study their ability to replicate neural activity distributions obtained in
functional MRI (fMRI) studies. We evaluate the performance of the GNN models on
a variety of scenarios in MRI studies and also compare it to a VAR model, which
is currently predominantly used for directed functional connectivity analysis.
We show that by learning localized functional interactions on the anatomical
substrate, GNN based approaches are able to robustly scale to large network
studies, even when available data are scarce. By including anatomical
connectivity as the physical substrate for information propagation, such GNNs
also provide a multimodal perspective on directed connectivity analysis,
offering a novel possibility to investigate the spatio-temporal dynamics in
brain networks.
Related papers
- Interpretable Spatio-Temporal Embedding for Brain Structural-Effective Network with Ordinary Differential Equation [56.34634121544929]
In this study, we first construct the brain-effective network via the dynamic causal model.
We then introduce an interpretable graph learning framework termed Spatio-Temporal Embedding ODE (STE-ODE)
This framework incorporates specifically designed directed node embedding layers, aiming at capturing the dynamic interplay between structural and effective networks.
arXiv Detail & Related papers (2024-05-21T20:37:07Z) - Transferability of coVariance Neural Networks and Application to
Interpretable Brain Age Prediction using Anatomical Features [119.45320143101381]
Graph convolutional networks (GCN) leverage topology-driven graph convolutional operations to combine information across the graph for inference tasks.
We have studied GCNs with covariance matrices as graphs in the form of coVariance neural networks (VNNs)
VNNs inherit the scale-free data processing architecture from GCNs and here, we show that VNNs exhibit transferability of performance over datasets whose covariance matrices converge to a limit object.
arXiv Detail & Related papers (2023-05-02T22:15:54Z) - DBGDGM: Dynamic Brain Graph Deep Generative Model [63.23390833353625]
Graphs are a natural representation of brain activity derived from functional magnetic imaging (fMRI) data.
It is well known that clusters of anatomical brain regions, known as functional connectivity networks (FCNs), encode temporal relationships which can serve as useful biomarkers for understanding brain function and dysfunction.
Previous works, however, ignore the temporal dynamics of the brain and focus on static graphs.
We propose a dynamic brain graph deep generative model (DBGDGM) which simultaneously clusters brain regions into temporally evolving communities and learns dynamic unsupervised node embeddings.
arXiv Detail & Related papers (2023-01-26T20:45:30Z) - DynDepNet: Learning Time-Varying Dependency Structures from fMRI Data
via Dynamic Graph Structure Learning [58.94034282469377]
We propose DynDepNet, a novel method for learning the optimal time-varying dependency structure of fMRI data induced by downstream prediction tasks.
Experiments on real-world fMRI datasets, for the task of sex classification, demonstrate that DynDepNet achieves state-of-the-art results.
arXiv Detail & Related papers (2022-09-27T16:32:11Z) - Deep Representations for Time-varying Brain Datasets [4.129225533930966]
This paper builds an efficient graph neural network model that incorporates both region-mapped fMRI sequences and structural connectivities as inputs.
We find good representations of the latent brain dynamics through learning sample-level adaptive adjacency matrices.
These modules can be easily adapted to and are potentially useful for other applications outside the neuroscience domain.
arXiv Detail & Related papers (2022-05-23T21:57:31Z) - Functional2Structural: Cross-Modality Brain Networks Representation
Learning [55.24969686433101]
Graph mining on brain networks may facilitate the discovery of novel biomarkers for clinical phenotypes and neurodegenerative diseases.
We propose a novel graph learning framework, known as Deep Signed Brain Networks (DSBN), with a signed graph encoder.
We validate our framework on clinical phenotype and neurodegenerative disease prediction tasks using two independent, publicly available datasets.
arXiv Detail & Related papers (2022-05-06T03:45:36Z) - Deep Reinforcement Learning Guided Graph Neural Networks for Brain
Network Analysis [61.53545734991802]
We propose a novel brain network representation framework, namely BN-GNN, which searches for the optimal GNN architecture for each brain network.
Our proposed BN-GNN improves the performance of traditional GNNs on different brain network analysis tasks.
arXiv Detail & Related papers (2022-03-18T07:05:27Z) - Joint Embedding of Structural and Functional Brain Networks with Graph
Neural Networks for Mental Illness Diagnosis [17.48272758284748]
Graph Neural Networks (GNNs) have become a de facto model for analyzing graph-structured data.
We develop a novel multiview GNN for multimodal brain networks.
In particular, we regard each modality as a view for brain networks and employ contrastive learning for multimodal fusion.
arXiv Detail & Related papers (2021-07-07T13:49:57Z) - Learning Dynamic Graph Representation of Brain Connectome with
Spatio-Temporal Attention [33.049423523704824]
We propose STAGIN, a method for learning dynamic graph representation of the brain connectome with temporal attention.
Experiments on the HCP-Rest and the HCP-Task datasets demonstrate exceptional performance of our proposed method.
arXiv Detail & Related papers (2021-05-27T23:06:50Z) - A Graph Neural Network Framework for Causal Inference in Brain Networks [0.3392372796177108]
A central question in neuroscience is how self-organizing dynamic interactions in the brain emerge on their relatively static backbone.
We present a graph neural network (GNN) framework to describe functional interactions based on structural anatomical layout.
We show that GNNs are able to capture long-term dependencies in data and also scale up to the analysis of large-scale networks.
arXiv Detail & Related papers (2020-10-14T15:01:21Z) - Spatio-Temporal Graph Convolution for Resting-State fMRI Analysis [11.85489505372321]
We train a-temporal graph convolutional network (ST-GCN) on short sub-sequences of the BOLD time series to model the non-stationary nature of functional connectivity.
St-GCN is significantly more accurate than common approaches in predicting gender and age based on BOLD signals.
arXiv Detail & Related papers (2020-03-24T01:56:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.