Federated $f$-Differential Privacy
- URL: http://arxiv.org/abs/2102.11158v1
- Date: Mon, 22 Feb 2021 16:28:21 GMT
- Title: Federated $f$-Differential Privacy
- Authors: Qinqing Zheng, Shuxiao Chen, Qi Long, Weijie J. Su
- Abstract summary: Federated learning (FL) is a training paradigm where the clients collaboratively learn models by repeatedly sharing information.
We introduce federated $f$-differential privacy, a new notion specifically tailored to the federated setting.
We then propose a generic private federated learning framework PriFedSync that accommodates a large family of state-of-the-art FL algorithms.
- Score: 19.499120576896228
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated learning (FL) is a training paradigm where the clients
collaboratively learn models by repeatedly sharing information without
compromising much on the privacy of their local sensitive data. In this paper,
we introduce federated $f$-differential privacy, a new notion specifically
tailored to the federated setting, based on the framework of Gaussian
differential privacy. Federated $f$-differential privacy operates on record
level: it provides the privacy guarantee on each individual record of one
client's data against adversaries. We then propose a generic private federated
learning framework {PriFedSync} that accommodates a large family of
state-of-the-art FL algorithms, which provably achieves federated
$f$-differential privacy. Finally, we empirically demonstrate the trade-off
between privacy guarantee and prediction performance for models trained by
{PriFedSync} in computer vision tasks.
Related papers
- Differentially Private Federated Learning: A Systematic Review [35.13641504685795]
We propose a new taxonomy of differentially private federated learning based on definition and guarantee of various differential privacy models and scenarios.
Our work provide valuable insights into privacy-preserving federated learning and suggest practical directions for future research.
arXiv Detail & Related papers (2024-05-14T03:49:14Z) - Federated Transfer Learning with Differential Privacy [21.50525027559563]
We formulate the notion of textitfederated differential privacy, which offers privacy guarantees for each data set without assuming a trusted central server.
We show that federated differential privacy is an intermediate privacy model between the well-established local and central models of differential privacy.
arXiv Detail & Related papers (2024-03-17T21:04:48Z) - FewFedPIT: Towards Privacy-preserving and Few-shot Federated Instruction Tuning [54.26614091429253]
Federated instruction tuning (FedIT) is a promising solution, by consolidating collaborative training across multiple data owners.
FedIT encounters limitations such as scarcity of instructional data and risk of exposure to training data extraction attacks.
We propose FewFedPIT, designed to simultaneously enhance privacy protection and model performance of federated few-shot learning.
arXiv Detail & Related papers (2024-03-10T08:41:22Z) - Clients Collaborate: Flexible Differentially Private Federated Learning
with Guaranteed Improvement of Utility-Privacy Trade-off [34.2117116062642]
We introduce a novel federated learning framework with rigorous privacy guarantees, named FedCEO, to strike a trade-off between model utility and user privacy.
We show that our FedCEO can effectively recover the disrupted semantic information by smoothing the global semantic space.
It observes significant performance improvements and strict privacy guarantees under different privacy settings.
arXiv Detail & Related papers (2024-02-10T17:39:34Z) - Federated Learning Empowered by Generative Content [55.576885852501775]
Federated learning (FL) enables leveraging distributed private data for model training in a privacy-preserving way.
We propose a novel FL framework termed FedGC, designed to mitigate data heterogeneity issues by diversifying private data with generative content.
We conduct a systematic empirical study on FedGC, covering diverse baselines, datasets, scenarios, and modalities.
arXiv Detail & Related papers (2023-12-10T07:38:56Z) - Shuffled Differentially Private Federated Learning for Time Series Data
Analytics [10.198481976376717]
We develop a privacy-preserving federated learning algorithm for time series data.
Specifically, we employ local differential privacy to extend the privacy protection trust boundary to the clients.
We also incorporate shuffle techniques to achieve a privacy amplification, mitigating the accuracy decline caused by leveraging local differential privacy.
arXiv Detail & Related papers (2023-07-30T10:30:38Z) - Smooth Anonymity for Sparse Graphs [69.1048938123063]
differential privacy has emerged as the gold standard of privacy, however, when it comes to sharing sparse datasets.
In this work, we consider a variation of $k$-anonymity, which we call smooth-$k$-anonymity, and design simple large-scale algorithms that efficiently provide smooth-$k$-anonymity.
arXiv Detail & Related papers (2022-07-13T17:09:25Z) - Individual Privacy Accounting for Differentially Private Stochastic Gradient Descent [69.14164921515949]
We characterize privacy guarantees for individual examples when releasing models trained by DP-SGD.
We find that most examples enjoy stronger privacy guarantees than the worst-case bound.
This implies groups that are underserved in terms of model utility simultaneously experience weaker privacy guarantees.
arXiv Detail & Related papers (2022-06-06T13:49:37Z) - FedCG: Leverage Conditional GAN for Protecting Privacy and Maintaining Competitive Performance in Federated Learning [11.852346300577494]
Federated learning (FL) aims to protect data privacy by enabling clients to build machine learning models collaboratively without sharing their private data.
Recent works demonstrate that information exchanged during FL is subject to gradient-based privacy attacks.
We propose $textscFedCG$, a novel federated learning method that leverages conditional generative adversarial networks to achieve high-level privacy protection.
arXiv Detail & Related papers (2021-11-16T03:20:37Z) - Understanding Clipping for Federated Learning: Convergence and
Client-Level Differential Privacy [67.4471689755097]
This paper empirically demonstrates that the clipped FedAvg can perform surprisingly well even with substantial data heterogeneity.
We provide the convergence analysis of a differential private (DP) FedAvg algorithm and highlight the relationship between clipping bias and the distribution of the clients' updates.
arXiv Detail & Related papers (2021-06-25T14:47:19Z) - Private Reinforcement Learning with PAC and Regret Guarantees [69.4202374491817]
We design privacy preserving exploration policies for episodic reinforcement learning (RL)
We first provide a meaningful privacy formulation using the notion of joint differential privacy (JDP)
We then develop a private optimism-based learning algorithm that simultaneously achieves strong PAC and regret bounds, and enjoys a JDP guarantee.
arXiv Detail & Related papers (2020-09-18T20:18:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.