Enhancing Data-Free Adversarial Distillation with Activation
Regularization and Virtual Interpolation
- URL: http://arxiv.org/abs/2102.11638v1
- Date: Tue, 23 Feb 2021 11:37:40 GMT
- Title: Enhancing Data-Free Adversarial Distillation with Activation
Regularization and Virtual Interpolation
- Authors: Xiaoyang Qu, Jianzong Wang, Jing Xiao
- Abstract summary: A data-free adversarial distillation framework deploys a generative network to transfer the teacher model's knowledge to the student model.
We add an activation regularizer and a virtual adversarial method to improve the data generation efficiency.
Our model's accuracy is 13.8% higher than the state-of-the-art data-free method on CIFAR-100.
- Score: 19.778192371420793
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Knowledge distillation refers to a technique of transferring the knowledge
from a large learned model or an ensemble of learned models to a small model.
This method relies on access to the original training set, which might not
always be available. A possible solution is a data-free adversarial
distillation framework, which deploys a generative network to transfer the
teacher model's knowledge to the student model. However, the data generation
efficiency is low in the data-free adversarial distillation. We add an
activation regularizer and a virtual interpolation method to improve the data
generation efficiency. The activation regularizer enables the students to match
the teacher's predictions close to activation boundaries and decision
boundaries. The virtual interpolation method can generate virtual samples and
labels in-between decision boundaries. Our experiments show that our approach
surpasses state-of-the-art data-free distillation methods. The student model
can achieve 95.42% accuracy on CIFAR-10 and 77.05% accuracy on CIFAR-100
without any original training data. Our model's accuracy is 13.8% higher than
the state-of-the-art data-free method on CIFAR-100.
Related papers
- BOOT: Data-free Distillation of Denoising Diffusion Models with
Bootstrapping [64.54271680071373]
Diffusion models have demonstrated excellent potential for generating diverse images.
Knowledge distillation has been recently proposed as a remedy that can reduce the number of inference steps to one or a few.
We present a novel technique called BOOT, that overcomes limitations with an efficient data-free distillation algorithm.
arXiv Detail & Related papers (2023-06-08T20:30:55Z) - Distilling Calibrated Student from an Uncalibrated Teacher [8.101116303448586]
We study how to obtain a student from an uncalibrated teacher.
Our approach relies on the fusion of data-augmentation techniques, including but not limited to cutout, mixup, and CutMix.
We extend our approach beyond traditional knowledge distillation and find it suitable as well.
arXiv Detail & Related papers (2023-02-22T16:18:38Z) - Exploring Inconsistent Knowledge Distillation for Object Detection with
Data Augmentation [66.25738680429463]
Knowledge Distillation (KD) for object detection aims to train a compact detector by transferring knowledge from a teacher model.
We propose inconsistent knowledge distillation (IKD) which aims to distill knowledge inherent in the teacher model's counter-intuitive perceptions.
Our method outperforms state-of-the-art KD baselines on one-stage, two-stage and anchor-free object detectors.
arXiv Detail & Related papers (2022-09-20T16:36:28Z) - Parameter-Efficient and Student-Friendly Knowledge Distillation [83.56365548607863]
We present a parameter-efficient and student-friendly knowledge distillation method, namely PESF-KD, to achieve efficient and sufficient knowledge transfer.
Experiments on a variety of benchmarks show that PESF-KD can significantly reduce the training cost while obtaining competitive results compared to advanced online distillation methods.
arXiv Detail & Related papers (2022-05-28T16:11:49Z) - Robust and Resource-Efficient Data-Free Knowledge Distillation by Generative Pseudo Replay [5.3330804968579795]
Data-Free Knowledge Distillation (KD) allows knowledge transfer from a trained neural network (teacher) to a more compact one (student) in the absence of original training data.
Existing works use a validation set to monitor the accuracy of the student over real data and report the highest performance throughout the entire process.
However, validation data may not be available at distillation time either, making it infeasible to record the student snapshot that achieved the peak accuracy.
This is challenging because the student experiences knowledge degradation due to the distribution shift of the synthetic data.
We propose to model the distribution of the previously observed synthetic samples
arXiv Detail & Related papers (2022-01-09T14:14:28Z) - Conditional Generative Data-Free Knowledge Distillation based on
Attention Transfer [0.8594140167290099]
We propose a conditional generative data-free knowledge distillation (CGDD) framework to train efficient portable network without any real data.
In this framework, except using the knowledge extracted from teacher model, we introduce preset labels as additional auxiliary information.
We show that trained portable network learned with proposed data-free distillation method obtains 99.63%, 99.07% and 99.84% relative accuracy on CIFAR10, CIFAR100 and Caltech101.
arXiv Detail & Related papers (2021-12-31T09:23:40Z) - Efficient training of lightweight neural networks using Online
Self-Acquired Knowledge Distillation [51.66271681532262]
Online Self-Acquired Knowledge Distillation (OSAKD) is proposed, aiming to improve the performance of any deep neural model in an online manner.
We utilize k-nn non-parametric density estimation technique for estimating the unknown probability distributions of the data samples in the output feature space.
arXiv Detail & Related papers (2021-08-26T14:01:04Z) - Contrastive Model Inversion for Data-Free Knowledge Distillation [60.08025054715192]
We propose Contrastive Model Inversion, where the data diversity is explicitly modeled as an optimizable objective.
Our main observation is that, under the constraint of the same amount of data, higher data diversity usually indicates stronger instance discrimination.
Experiments on CIFAR-10, CIFAR-100, and Tiny-ImageNet demonstrate that CMI achieves significantly superior performance when the generated data are used for knowledge distillation.
arXiv Detail & Related papers (2021-05-18T15:13:00Z) - Beyond Self-Supervision: A Simple Yet Effective Network Distillation
Alternative to Improve Backbones [40.33419553042038]
We propose to improve existing baseline networks via knowledge distillation from off-the-shelf pre-trained big powerful models.
Our solution performs distillation by only driving prediction of the student model consistent with that of the teacher model.
We empirically find that such simple distillation settings perform extremely effective, for example, the top-1 accuracy on ImageNet-1k validation set of MobileNetV3-large and ResNet50-D can be significantly improved.
arXiv Detail & Related papers (2021-03-10T09:32:44Z) - Learning to Augment for Data-Scarce Domain BERT Knowledge Distillation [55.34995029082051]
We propose a method to learn to augment for data-scarce domain BERT knowledge distillation.
We show that the proposed method significantly outperforms state-of-the-art baselines on four different tasks.
arXiv Detail & Related papers (2021-01-20T13:07:39Z) - Large-Scale Generative Data-Free Distillation [17.510996270055184]
We propose a new method to train a generative image model by leveraging the intrinsic normalization layers' statistics.
The proposed method pushes forward the data-free distillation performance on CIFAR-10 and CIFAR-100 to 95.02% and 77.02% respectively.
We are able to scale it to ImageNet dataset, which to the best of our knowledge, has never been done using generative models in a data-free setting.
arXiv Detail & Related papers (2020-12-10T10:54:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.