BOOT: Data-free Distillation of Denoising Diffusion Models with
Bootstrapping
- URL: http://arxiv.org/abs/2306.05544v1
- Date: Thu, 8 Jun 2023 20:30:55 GMT
- Title: BOOT: Data-free Distillation of Denoising Diffusion Models with
Bootstrapping
- Authors: Jiatao Gu, Shuangfei Zhai, Yizhe Zhang, Lingjie Liu, Josh Susskind
- Abstract summary: Diffusion models have demonstrated excellent potential for generating diverse images.
Knowledge distillation has been recently proposed as a remedy that can reduce the number of inference steps to one or a few.
We present a novel technique called BOOT, that overcomes limitations with an efficient data-free distillation algorithm.
- Score: 64.54271680071373
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Diffusion models have demonstrated excellent potential for generating diverse
images. However, their performance often suffers from slow generation due to
iterative denoising. Knowledge distillation has been recently proposed as a
remedy that can reduce the number of inference steps to one or a few without
significant quality degradation. However, existing distillation methods either
require significant amounts of offline computation for generating synthetic
training data from the teacher model or need to perform expensive online
learning with the help of real data. In this work, we present a novel technique
called BOOT, that overcomes these limitations with an efficient data-free
distillation algorithm. The core idea is to learn a time-conditioned model that
predicts the output of a pre-trained diffusion model teacher given any time
step. Such a model can be efficiently trained based on bootstrapping from two
consecutive sampled steps. Furthermore, our method can be easily adapted to
large-scale text-to-image diffusion models, which are challenging for
conventional methods given the fact that the training sets are often large and
difficult to access. We demonstrate the effectiveness of our approach on
several benchmark datasets in the DDIM setting, achieving comparable generation
quality while being orders of magnitude faster than the diffusion teacher. The
text-to-image results show that the proposed approach is able to handle highly
complex distributions, shedding light on more efficient generative modeling.
Related papers
- Distillation-Free One-Step Diffusion for Real-World Image Super-Resolution [81.81748032199813]
We propose a Distillation-Free One-Step Diffusion model.
Specifically, we propose a noise-aware discriminator (NAD) to participate in adversarial training.
We improve the perceptual loss with edge-aware DISTS (EA-DISTS) to enhance the model's ability to generate fine details.
arXiv Detail & Related papers (2024-10-05T16:41:36Z) - Tuning Timestep-Distilled Diffusion Model Using Pairwise Sample Optimization [97.35427957922714]
We present an algorithm named pairwise sample optimization (PSO), which enables the direct fine-tuning of an arbitrary timestep-distilled diffusion model.
PSO introduces additional reference images sampled from the current time-step distilled model, and increases the relative likelihood margin between the training images and reference images.
We show that PSO can directly adapt distilled models to human-preferred generation with both offline and online-generated pairwise preference image data.
arXiv Detail & Related papers (2024-10-04T07:05:16Z) - One Step Diffusion-based Super-Resolution with Time-Aware Distillation [60.262651082672235]
Diffusion-based image super-resolution (SR) methods have shown promise in reconstructing high-resolution images with fine details from low-resolution counterparts.
Recent techniques have been devised to enhance the sampling efficiency of diffusion-based SR models via knowledge distillation.
We propose a time-aware diffusion distillation method, named TAD-SR, to accomplish effective and efficient image super-resolution.
arXiv Detail & Related papers (2024-08-14T11:47:22Z) - Adv-KD: Adversarial Knowledge Distillation for Faster Diffusion Sampling [2.91204440475204]
Diffusion Probabilistic Models (DPMs) have emerged as a powerful class of deep generative models.
They rely on sequential denoising steps during sample generation.
We propose a novel method that integrates denoising phases directly into the model's architecture.
arXiv Detail & Related papers (2024-05-31T08:19:44Z) - EM Distillation for One-step Diffusion Models [65.57766773137068]
We propose a maximum likelihood-based approach that distills a diffusion model to a one-step generator model with minimal loss of quality.
We develop a reparametrized sampling scheme and a noise cancellation technique that together stabilizes the distillation process.
arXiv Detail & Related papers (2024-05-27T05:55:22Z) - One-Step Diffusion Distillation via Deep Equilibrium Models [64.11782639697883]
We introduce a simple yet effective means of distilling diffusion models directly from initial noise to the resulting image.
Our method enables fully offline training with just noise/image pairs from the diffusion model.
We demonstrate that the DEQ architecture is crucial to this capability, as GET matches a $5times$ larger ViT in terms of FID scores.
arXiv Detail & Related papers (2023-12-12T07:28:40Z) - Continual Learning of Diffusion Models with Generative Distillation [34.52513912701778]
Diffusion models are powerful generative models that achieve state-of-the-art performance in image synthesis.
In this paper, we propose generative distillation, an approach that distils the entire reverse process of a diffusion model.
arXiv Detail & Related papers (2023-11-23T14:33:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.