論文の概要: EBMs Trained with Maximum Likelihood are Generator Models Trained with a
Self-adverserial Loss
- arxiv url: http://arxiv.org/abs/2102.11757v1
- Date: Tue, 23 Feb 2021 15:34:12 GMT
- ステータス: 処理完了
- システム内更新日: 2021-02-24 14:06:15.800397
- Title: EBMs Trained with Maximum Likelihood are Generator Models Trained with a
Self-adverserial Loss
- Title(参考訳): 最大確率で訓練されたEBMは、自己逆転損失で訓練されたジェネレータモデルである
- Authors: Zhisheng Xiao, Qing Yan, Yali Amit
- Abstract要約: Langevin ダイナミクスを関連する勾配降下 ODE の決定論的解に置き換えます。
本研究は, 動的騒音の再導入は, 動作の質的変化に繋がらないことを示す。
そこで, EBMトレーニングは, 最大確率推定よりも, 事実上自己反逆的処置であることを示す。
- 参考スコア(独自算出の注目度): 6.445605125467574
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Maximum likelihood estimation is widely used in training Energy-based models
(EBMs). Training requires samples from an unnormalized distribution, which is
usually intractable, and in practice, these are obtained by MCMC algorithms
such as Langevin dynamics. However, since MCMC in high-dimensional space
converges extremely slowly, the current understanding of maximum likelihood
training, which assumes approximate samples from the model can be drawn, is
problematic. In this paper, we try to understand this training procedure by
replacing Langevin dynamics with deterministic solutions of the associated
gradient descent ODE. Doing so allows us to study the density induced by the
dynamics (if the dynamics are invertible), and connect with GANs by treating
the dynamics as generator models, the initial values as latent variables and
the loss as optimizing a critic defined by the very same energy that determines
the generator through its gradient. Hence the term - self-adversarial loss. We
show that reintroducing the noise in the dynamics does not lead to a
qualitative change in the behavior, and merely reduces the quality of the
generator. We thus show that EBM training is effectively a self-adversarial
procedure rather than maximum likelihood estimation.
- Abstract(参考訳): 最大確率推定は、エネルギーベースモデル(EBM)の訓練に広く用いられている。
トレーニングには、通常難易度の高い非正規分布のサンプルが必要であり、実際にはランゲビンダイナミクスなどのMCMCアルゴリズムによって取得されます。
しかし、高次元空間におけるMCMCの収束は非常に遅いため、モデルから近似サンプルを抽出できると仮定した最大極大トレーニングの現在の理解は問題となる。
本稿では、Langevinダイナミクスを関連する勾配降下ODEの決定論的解に置き換えることで、このトレーニング手順を理解することを試みる。
そうすることで、ダイナミクスによって誘導される密度(ダイナミクスが反転可能であれば)を研究し、ダイナミクスをジェネレータモデルとして扱うことでGANと接続し、初期値を潜在変数として扱い、その勾配を通じて発電機を決定する全く同じエネルギーによって定義される批評家を最適化するように損失します。
したがって、用語 - 自己逆転損失。
本研究では, 騒音の再導入は, 動作の質的変化を招き得ず, ジェネレータの品質を低下させるだけであることを示す。
そこで, EBMトレーニングは, 最大確率推定よりも, 事実上自己反逆的処置であることを示す。
関連論文リスト
- Bellman Diffusion: Generative Modeling as Learning a Linear Operator in the Distribution Space [72.52365911990935]
本稿では,MDPの線形性を維持する新しいDGMフレームワークであるBellman Diffusionを紹介する。
この結果から,ベルマン拡散は分布RLタスクにおける従来のヒストグラムベースベースラインよりも1.5倍高速に収束し,精度の高い画像生成装置であることがわかった。
論文 参考訳(メタデータ) (2024-10-02T17:53:23Z) - Variational Potential Flow: A Novel Probabilistic Framework for Energy-Based Generative Modelling [10.926841288976684]
エネルギーをベースとした新しい生成フレームワークVAPOについて述べる。
VAPOは、勾配(流れ)が前のサンプルを導くポテンシャルエネルギー関数を学習することを目的としており、その密度の進化は近似的なデータ準同相性に従う。
イメージはポテンシャルエネルギーをトレーニングした後、ガウスのサンプルを初期化し、固定時間間隔で電位フローを管理するODEを解くことで生成することができる。
論文 参考訳(メタデータ) (2024-07-21T18:08:12Z) - Learning Energy-Based Prior Model with Diffusion-Amortized MCMC [89.95629196907082]
非収束短距離MCMCを用いた事前及び後方サンプリングによる潜時空間EMM学習の一般的な実践は、さらなる進歩を妨げている。
本稿では,MCMCサンプリングのための単純だが効果的な拡散型アモータイズ手法を導入し,それに基づく潜時空間EMMのための新しい学習アルゴリズムを開発した。
論文 参考訳(メタデータ) (2023-10-05T00:23:34Z) - Improving and generalizing flow-based generative models with minibatch
optimal transport [90.01613198337833]
連続正規化フロー(CNF)のための一般条件流整合(CFM)技術を導入する。
CFMは、拡散モデルのフローをトレーニングするために使用されるような安定した回帰目標を特徴としているが、決定論的フローモデルの効率的な推論を好んでいる。
我々の目的の変種は最適輸送CFM (OT-CFM) であり、訓練がより安定し、より高速な推論をもたらすより単純なフローを生成する。
論文 参考訳(メタデータ) (2023-02-01T14:47:17Z) - Stabilizing Machine Learning Prediction of Dynamics: Noise and
Noise-inspired Regularization [58.720142291102135]
近年、機械学習(ML)モデルはカオス力学系の力学を正確に予測するために訓練可能であることが示されている。
緩和技術がなければ、この技術は人工的に迅速にエラーを発生させ、不正確な予測と/または気候不安定をもたらす可能性がある。
トレーニング中にモデル入力に付加される多数の独立雑音実効化の効果を決定論的に近似する正規化手法であるLinearized Multi-Noise Training (LMNT)を導入する。
論文 参考訳(メタデータ) (2022-11-09T23:40:52Z) - Self-Adapting Noise-Contrastive Estimation for Energy-Based Models [0.0]
ノイズコントラスト推定(NCE)を用いたトレーニングエネルギーベースモデルは理論的には実現可能であるが、実際は困難である。
従来の研究は、別個の生成モデルとしてノイズ分布をモデル化し、EBMでこのノイズモデルを同時に訓練してきた。
本論文では,EMMの静的なインスタンスを学習軌道に沿って雑音分布として利用する自己適応型NCEアルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-11-03T15:17:43Z) - Conditional Generative Models for Simulation of EMG During Naturalistic
Movements [45.698312905115955]
本稿では、運動単位活性化電位波形を生成するために、逆向きに訓練された条件付き生成ニューラルネットワークを提案する。
本研究では,より少ない数の数値モデルの出力を高い精度で予測的に補間できることを実証する。
論文 参考訳(メタデータ) (2022-11-03T14:49:02Z) - Your Autoregressive Generative Model Can be Better If You Treat It as an
Energy-Based One [83.5162421521224]
本稿では,自己回帰生成モデルの学習のための独自のE-ARM法を提案する。
E-ARMは、よく設計されたエネルギーベースの学習目標を活用する。
我々は、E-ARMを効率的に訓練でき、露光バイアス問題を緩和できることを示した。
論文 参考訳(メタデータ) (2022-06-26T10:58:41Z) - Learning Energy-Based Model with Variational Auto-Encoder as Amortized
Sampler [35.80109055748496]
最大確率でエネルギーベースモデル(ebms)を訓練するにはマルコフ連鎖モンテカルロサンプリングが必要である。
我々は、エネルギー関数から派生したランゲビンダイナミクスのような有限ステップMCMCを初期化する変分オートエンコーダ(VAE)を学びます。
これらのアモールト化MCMCサンプルにより、ESMは「合成による分析」スキームに従って最大で訓練することができる。
我々はこの共同学習アルゴリズムを変分MCMC教育と呼び、VAEはEMMをデータ分布に向けて追従する。
論文 参考訳(メタデータ) (2020-12-29T20:46:40Z) - No MCMC for me: Amortized sampling for fast and stable training of
energy-based models [62.1234885852552]
エネルギーベースモデル(EBM)は、不確実性を表す柔軟で魅力的な方法である。
本稿では,エントロピー規則化ジェネレータを用いてEMMを大規模に訓練し,MCMCサンプリングを記憶する簡単な方法を提案する。
次に、最近提案されたジョイント・エナジー・モデル(JEM)に推定器を適用し、元の性能と高速で安定したトレーニングとを一致させる。
論文 参考訳(メタデータ) (2020-10-08T19:17:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。