論文の概要: Feature Importance Explanations for Temporal Black-Box Models
- arxiv url: http://arxiv.org/abs/2102.11934v1
- Date: Tue, 23 Feb 2021 20:41:07 GMT
- ステータス: 処理完了
- システム内更新日: 2021-02-25 13:41:52.472661
- Title: Feature Importance Explanations for Temporal Black-Box Models
- Title(参考訳): 時間的ブラックボックスモデルの特徴的重要度記述
- Authors: Akshay Sood and Mark Craven
- Abstract要約: 自然界に固有の時間的モデルを説明する手法であるTIMEを提案する。
我々のアプローチは,グローバルな特徴の重要度を分析するために,モデルに依存しない置換に基づくアプローチを用いる。
- 参考スコア(独自算出の注目度): 3.655021726150369
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Models in the supervised learning framework may capture rich and complex
representations over the features that are hard for humans to interpret.
Existing methods to explain such models are often specific to architectures and
data where the features do not have a time-varying component. In this work, we
propose TIME, a method to explain models that are inherently temporal in
nature. Our approach (i) uses a model-agnostic permutation-based approach to
analyze global feature importance, (ii) identifies the importance of salient
features with respect to their temporal ordering as well as localized windows
of influence, and (iii) uses hypothesis testing to provide statistical rigor.
- Abstract(参考訳): 教師付き学習フレームワークのモデルは、人間が解釈するのは難しい機能に対して、豊かで複雑な表現を捉えることができる。
このようなモデルを説明する既存の手法は、しばしば時間を要するコンポーネントを持たないアーキテクチャやデータに特有のものである。
本研究では、本質的に時間的であるモデルを説明する手法であるTIMEを提案する。
我々のアプローチ(i)は,グローバル特徴の重要度を分析するためにモデル非依存な置換に基づくアプローチを用い,(ii)時間的順序と局所的な影響の窓に関して有意義な特徴の重要性を識別し,(iii)統計的厳密性を提供するために仮説検定を用いる。
関連論文リスト
- On the importance of structural identifiability for machine learning with partially observed dynamical systems [0.7864304771129751]
我々は、構造的識別可能性分析を用いて、同一のシステム出力に関連付けられたパラメータ構成を明示的に関連づける。
本研究は,機械学習コミュニティから比較的注目されているトピックである,構造的識別可能性の説明の重要性を実証するものである。
論文 参考訳(メタデータ) (2025-02-06T15:06:52Z) - XForecast: Evaluating Natural Language Explanations for Time Series Forecasting [72.57427992446698]
時系列予測は、特に正確な予測に依存するステークホルダーにとって、意思決定を支援する。
伝統的に説明可能なAI(XAI)メソッドは、機能や時間的重要性を基盤とするものであり、専門家の知識を必要とすることが多い。
時系列データにおける複雑な因果関係のため,予測NLEの評価は困難である。
論文 参考訳(メタデータ) (2024-10-18T05:16:39Z) - Embedded feature selection in LSTM networks with multi-objective
evolutionary ensemble learning for time series forecasting [49.1574468325115]
本稿では,Long Short-Term Memory Networkに埋め込まれた特徴選択手法を提案する。
本手法はLSTMの重みと偏りを分割的に最適化する。
イタリアとスペイン南東部の大気質時系列データの実験的評価により,従来のLSTMの能力一般化が著しく向上することが確認された。
論文 参考訳(メタデータ) (2023-12-29T08:42:10Z) - TimeTuner: Diagnosing Time Representations for Time-Series Forecasting
with Counterfactual Explanations [3.8357850372472915]
本稿では,モデル行動が局所化,定常性,時系列表現の相関とどのように関連しているかをアナリストが理解するために,新しいビジュアル分析フレームワークであるTimeTunerを提案する。
TimeTunerは時系列表現を特徴付けるのに役立ち、機能エンジニアリングのプロセスを導くのに役立ちます。
論文 参考訳(メタデータ) (2023-07-19T11:40:15Z) - OpenSTL: A Comprehensive Benchmark of Spatio-Temporal Predictive
Learning [67.07363529640784]
提案するOpenSTLは,一般的なアプローチを再帰的モデルと再帰的モデルに分類する。
我々は, 合成移動物体軌道, 人間の動き, 運転シーン, 交通流, 天気予報など, さまざまな領域にわたるデータセットの標準評価を行う。
リカレントフリーモデルは、リカレントモデルよりも効率と性能のバランスが良いことがわかった。
論文 参考訳(メタデータ) (2023-06-20T03:02:14Z) - ChiroDiff: Modelling chirographic data with Diffusion Models [132.5223191478268]
チャーログラフィーデータのための強力なモデルクラスである「拡散確率モデル(Denoising Diffusion Probabilistic Models)」やDDPMを導入している。
我々のモデルは「ChiroDiff」と呼ばれ、非自己回帰的であり、全体論的概念を捉えることを学び、したがって高い時間的サンプリングレートに回復する。
論文 参考訳(メタデータ) (2023-04-07T15:17:48Z) - Neural Superstatistics for Bayesian Estimation of Dynamic Cognitive
Models [2.7391842773173334]
我々は,時間変化パラメータと時間不変パラメータの両方を復元できるベイズ推論のシミュレーションに基づくディープラーニング手法を開発した。
この結果から,ディープラーニングアプローチは時間的ダイナミクスを捉える上で極めて効率的であることが示唆された。
論文 参考訳(メタデータ) (2022-11-23T17:42:53Z) - Temporal Relevance Analysis for Video Action Models [70.39411261685963]
まず,CNNに基づく行動モデルにより捉えたフレーム間の時間的関係を定量化する手法を提案する。
次に、時間的モデリングがどのように影響を受けるかをよりよく理解するために、包括的な実験と詳細な分析を行います。
論文 参考訳(メタデータ) (2022-04-25T19:06:48Z) - This looks more like that: Enhancing Self-Explaining Models by
Prototypical Relevance Propagation [17.485732906337507]
本稿では,自己説明型ネットワークであるProtoPNetのアーティファクトのスペクトルの存在下でのケーススタディを示す。
より正確なモデル認識説明を生成するための新しい手法を提案する。
クリーンなデータセットを得るために,アーティファクト画像を分離するためのマルチビュークラスタリング戦略を提案する。
論文 参考訳(メタデータ) (2021-08-27T09:55:53Z) - Model-agnostic multi-objective approach for the evolutionary discovery
of mathematical models [55.41644538483948]
現代のデータ科学では、どの部分がより良い結果を得るために置き換えられるかというモデルの性質を理解することがより興味深い。
合成データ駆動型モデル学習において,多目的進化最適化を用いてアルゴリズムの所望特性を求める。
論文 参考訳(メタデータ) (2021-07-07T11:17:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。