Learning optimal multigrid smoothers via neural networks
- URL: http://arxiv.org/abs/2102.12071v1
- Date: Wed, 24 Feb 2021 05:02:54 GMT
- Title: Learning optimal multigrid smoothers via neural networks
- Authors: Ru Huang, Ruipeng Li, Yuanzhe Xi
- Abstract summary: We propose an efficient framework for learning optimized smoothers from operator stencils in the form of convolutional neural networks (CNNs)
CNNs are trained on small-scale problems from a given type of PDEs based on a supervised loss function derived from multigrid convergence theories.
Numerical results on anisotropic rotated Laplacian problems demonstrate improved convergence rates and solution time compared with classical hand-crafted relaxation methods.
- Score: 1.9336815376402723
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multigrid methods are one of the most efficient techniques for solving linear
systems arising from Partial Differential Equations (PDEs) and graph Laplacians
from machine learning applications. One of the key components of multigrid is
smoothing, which aims at reducing high-frequency errors on each grid level.
However, finding optimal smoothing algorithms is problem-dependent and can
impose challenges for many problems. In this paper, we propose an efficient
adaptive framework for learning optimized smoothers from operator stencils in
the form of convolutional neural networks (CNNs). The CNNs are trained on
small-scale problems from a given type of PDEs based on a supervised loss
function derived from multigrid convergence theories, and can be applied to
large-scale problems of the same class of PDEs. Numerical results on
anisotropic rotated Laplacian problems demonstrate improved convergence rates
and solution time compared with classical hand-crafted relaxation methods.
Related papers
- Optimizing Solution-Samplers for Combinatorial Problems: The Landscape
of Policy-Gradient Methods [52.0617030129699]
We introduce a novel theoretical framework for analyzing the effectiveness of DeepMatching Networks and Reinforcement Learning methods.
Our main contribution holds for a broad class of problems including Max-and Min-Cut, Max-$k$-Bipartite-Bi, Maximum-Weight-Bipartite-Bi, and Traveling Salesman Problem.
As a byproduct of our analysis we introduce a novel regularization process over vanilla descent and provide theoretical and experimental evidence that it helps address vanishing-gradient issues and escape bad stationary points.
arXiv Detail & Related papers (2023-10-08T23:39:38Z) - Multigrid-Augmented Deep Learning Preconditioners for the Helmholtz
Equation using Compact Implicit Layers [7.56372030029358]
We present a deep learning-based iterative approach to solve the discrete heterogeneous Helmholtz equation for high wavenumbers.
We construct a multilevel U-Net-like encoder-solver CNN with an implicit layer on the coarsest grid of the U-Net, where convolution kernels are inverted.
Our architecture can be used to generalize over different slowness models of various difficulties and is efficient at solving for many right-hand sides per slowness model.
arXiv Detail & Related papers (2023-06-30T08:56:51Z) - Implicit Stochastic Gradient Descent for Training Physics-informed
Neural Networks [51.92362217307946]
Physics-informed neural networks (PINNs) have effectively been demonstrated in solving forward and inverse differential equation problems.
PINNs are trapped in training failures when the target functions to be approximated exhibit high-frequency or multi-scale features.
In this paper, we propose to employ implicit gradient descent (ISGD) method to train PINNs for improving the stability of training process.
arXiv Detail & Related papers (2023-03-03T08:17:47Z) - Learning Subgrid-scale Models with Neural Ordinary Differential
Equations [0.39160947065896795]
We propose a new approach to learning the subgrid-scale model when simulating partial differential equations (PDEs)
In this approach neural networks are used to learn the coarse- to fine-grid map, which can be viewed as subgrid-scale parameterization.
Our method inherits the advantages of NODEs and can be used to parameterize subgrid scales, approximate coupling operators, and improve the efficiency of low-order solvers.
arXiv Detail & Related papers (2022-12-20T02:45:09Z) - Accelerated Solutions of Coupled Phase-Field Problems using Generative
Adversarial Networks [0.0]
We develop a new neural network based framework that uses encoder-decoder based conditional GeneLSTM layers to solve a system of Cahn-Hilliard microstructural equations.
We show that the trained models are mesh and scale-independent, thereby warranting application as effective neural operators.
arXiv Detail & Related papers (2022-11-22T08:32:22Z) - Learning Relaxation for Multigrid [1.14219428942199]
We use Neural Networks to learn relaxation parameters for an ensemble of diffusion operators with random coefficients.
We show that learning relaxation parameters on relatively small grids using a two-grid method and Gelfand's formula as a loss function can be implemented easily.
arXiv Detail & Related papers (2022-07-25T12:43:50Z) - Message Passing Neural PDE Solvers [60.77761603258397]
We build a neural message passing solver, replacing allally designed components in the graph with backprop-optimized neural function approximators.
We show that neural message passing solvers representationally contain some classical methods, such as finite differences, finite volumes, and WENO schemes.
We validate our method on various fluid-like flow problems, demonstrating fast, stable, and accurate performance across different domain topologies, equation parameters, discretizations, etc., in 1D and 2D.
arXiv Detail & Related papers (2022-02-07T17:47:46Z) - Cogradient Descent for Dependable Learning [64.02052988844301]
We propose a dependable learning based on Cogradient Descent (CoGD) algorithm to address the bilinear optimization problem.
CoGD is introduced to solve bilinear problems when one variable is with sparsity constraint.
It can also be used to decompose the association of features and weights, which further generalizes our method to better train convolutional neural networks (CNNs)
arXiv Detail & Related papers (2021-06-20T04:28:20Z) - Local AdaGrad-Type Algorithm for Stochastic Convex-Concave Minimax
Problems [80.46370778277186]
Large scale convex-concave minimax problems arise in numerous applications, including game theory, robust training, and training of generative adversarial networks.
We develop a communication-efficient distributed extragrad algorithm, LocalAdaSient, with an adaptive learning rate suitable for solving convex-concave minimax problem in the.
Server model.
We demonstrate its efficacy through several experiments in both the homogeneous and heterogeneous settings.
arXiv Detail & Related papers (2021-06-18T09:42:05Z) - Multipole Graph Neural Operator for Parametric Partial Differential
Equations [57.90284928158383]
One of the main challenges in using deep learning-based methods for simulating physical systems is formulating physics-based data.
We propose a novel multi-level graph neural network framework that captures interaction at all ranges with only linear complexity.
Experiments confirm our multi-graph network learns discretization-invariant solution operators to PDEs and can be evaluated in linear time.
arXiv Detail & Related papers (2020-06-16T21:56:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.