Optimizing Solution-Samplers for Combinatorial Problems: The Landscape
of Policy-Gradient Methods
- URL: http://arxiv.org/abs/2310.05309v2
- Date: Tue, 7 Nov 2023 00:37:26 GMT
- Title: Optimizing Solution-Samplers for Combinatorial Problems: The Landscape
of Policy-Gradient Methods
- Authors: Constantine Caramanis, Dimitris Fotakis, Alkis Kalavasis, Vasilis
Kontonis, Christos Tzamos
- Abstract summary: We introduce a novel theoretical framework for analyzing the effectiveness of DeepMatching Networks and Reinforcement Learning methods.
Our main contribution holds for a broad class of problems including Max-and Min-Cut, Max-$k$-Bipartite-Bi, Maximum-Weight-Bipartite-Bi, and Traveling Salesman Problem.
As a byproduct of our analysis we introduce a novel regularization process over vanilla descent and provide theoretical and experimental evidence that it helps address vanishing-gradient issues and escape bad stationary points.
- Score: 52.0617030129699
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep Neural Networks and Reinforcement Learning methods have empirically
shown great promise in tackling challenging combinatorial problems. In those
methods a deep neural network is used as a solution generator which is then
trained by gradient-based methods (e.g., policy gradient) to successively
obtain better solution distributions. In this work we introduce a novel
theoretical framework for analyzing the effectiveness of such methods. We ask
whether there exist generative models that (i) are expressive enough to
generate approximately optimal solutions; (ii) have a tractable, i.e,
polynomial in the size of the input, number of parameters; (iii) their
optimization landscape is benign in the sense that it does not contain
sub-optimal stationary points. Our main contribution is a positive answer to
this question. Our result holds for a broad class of combinatorial problems
including Max- and Min-Cut, Max-$k$-CSP, Maximum-Weight-Bipartite-Matching, and
the Traveling Salesman Problem. As a byproduct of our analysis we introduce a
novel regularization process over vanilla gradient descent and provide
theoretical and experimental evidence that it helps address vanishing-gradient
issues and escape bad stationary points.
Related papers
- Constrained or Unconstrained? Neural-Network-Based Equation Discovery from Data [0.0]
We represent the PDE as a neural network and use an intermediate state representation similar to a Physics-Informed Neural Network (PINN)
We present a penalty method and a widely used trust-region barrier method to solve this constrained optimization problem.
Our results on the Burgers' and the Korteweg-De Vreis equations demonstrate that the latter constrained method outperforms the penalty method.
arXiv Detail & Related papers (2024-05-30T01:55:44Z) - UCB-driven Utility Function Search for Multi-objective Reinforcement Learning [75.11267478778295]
In Multi-objective Reinforcement Learning (MORL) agents are tasked with optimising decision-making behaviours.
We focus on the case of linear utility functions parameterised by weight vectors w.
We introduce a method based on Upper Confidence Bound to efficiently search for the most promising weight vectors during different stages of the learning process.
arXiv Detail & Related papers (2024-05-01T09:34:42Z) - A Block-Coordinate Approach of Multi-level Optimization with an
Application to Physics-Informed Neural Networks [0.0]
We propose a multi-level algorithm for the solution of nonlinear optimization problems and analyze its evaluation complexity.
We apply it to the solution of partial differential equations using physics-informed neural networks (PINNs) and show on a few test problems that the approach results in better solutions and significant computational savings.
arXiv Detail & Related papers (2023-05-23T19:12:02Z) - Learning Proximal Operators to Discover Multiple Optima [66.98045013486794]
We present an end-to-end method to learn the proximal operator across non-family problems.
We show that for weakly-ized objectives and under mild conditions, the method converges globally.
arXiv Detail & Related papers (2022-01-28T05:53:28Z) - Physics and Equality Constrained Artificial Neural Networks: Application
to Partial Differential Equations [1.370633147306388]
Physics-informed neural networks (PINNs) have been proposed to learn the solution of partial differential equations (PDE)
Here, we show that this specific way of formulating the objective function is the source of severe limitations in the PINN approach.
We propose a versatile framework that can tackle both inverse and forward problems.
arXiv Detail & Related papers (2021-09-30T05:55:35Z) - On the Treatment of Optimization Problems with L1 Penalty Terms via
Multiobjective Continuation [0.0]
We present a novel algorithm that allows us to gain detailed insight into the effects of sparsity in linear and nonlinear optimization.
Our method can be seen as a generalization of well-known homotopy methods for linear regression problems to the nonlinear case.
arXiv Detail & Related papers (2020-12-14T13:00:50Z) - Deep Magnification-Flexible Upsampling over 3D Point Clouds [103.09504572409449]
We propose a novel end-to-end learning-based framework to generate dense point clouds.
We first formulate the problem explicitly, which boils down to determining the weights and high-order approximation errors.
Then, we design a lightweight neural network to adaptively learn unified and sorted weights as well as the high-order refinements.
arXiv Detail & Related papers (2020-11-25T14:00:18Z) - Conditional gradient methods for stochastically constrained convex
minimization [54.53786593679331]
We propose two novel conditional gradient-based methods for solving structured convex optimization problems.
The most important feature of our framework is that only a subset of the constraints is processed at each iteration.
Our algorithms rely on variance reduction and smoothing used in conjunction with conditional gradient steps, and are accompanied by rigorous convergence guarantees.
arXiv Detail & Related papers (2020-07-07T21:26:35Z) - GACEM: Generalized Autoregressive Cross Entropy Method for Multi-Modal
Black Box Constraint Satisfaction [69.94831587339539]
We present a modified Cross-Entropy Method (CEM) that uses a masked auto-regressive neural network for modeling uniform distributions over the solution space.
Our algorithm is able to express complicated solution spaces, thus allowing it to track a variety of different solution regions.
arXiv Detail & Related papers (2020-02-17T20:21:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.