Functional neural network for decision processing, a racing network of
programmable neurons with fuzzy logic where the target operating model relies
on the network itself
- URL: http://arxiv.org/abs/2102.12339v1
- Date: Wed, 24 Feb 2021 15:19:35 GMT
- Title: Functional neural network for decision processing, a racing network of
programmable neurons with fuzzy logic where the target operating model relies
on the network itself
- Authors: Frederic Jumelle, Kelvin So, Didan Deng
- Abstract summary: This paper introduces a novel model of artificial intelligence, the functional neural network for modeling human decision-making processes.
We believe that this functional neural network has a promising potential to transform the way we can compute decision-making.
- Score: 1.1602089225841632
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: In this paper, we are introducing a novel model of artificial intelligence,
the functional neural network for modeling of human decision-making processes.
This neural network is composed of multiple artificial neurons racing in the
network. Each of these neurons has a similar structure programmed independently
by the users and composed of an intention wheel, a motor core and a sensory
core representing the user itself and racing at a specific velocity. The
mathematics of the neuron's formulation and the racing mechanism of multiple
nodes in the network will be discussed, and the group decision process with
fuzzy logic and the transformation of these conceptual methods into practical
methods of simulation and in operations will be developed. Eventually, we will
describe some possible future research directions in the fields of finance,
education and medicine including the opportunity to design an intelligent
learning agent with application in business operations supervision. We believe
that this functional neural network has a promising potential to transform the
way we can compute decision-making and lead to a new generation of neuromorphic
chips for seamless human-machine interactions.
Related papers
- Retinal Vessel Segmentation via Neuron Programming [17.609169389489633]
This paper introduces a novel approach to neural network design, termed neuron programming'', to enhance a network's representation ability at the neuronal level.
Comprehensive experiments validate that neuron programming can achieve competitive performance in retinal blood segmentation.
arXiv Detail & Related papers (2024-11-17T16:03:30Z) - Contrastive Learning in Memristor-based Neuromorphic Systems [55.11642177631929]
Spiking neural networks have become an important family of neuron-based models that sidestep many of the key limitations facing modern-day backpropagation-trained deep networks.
In this work, we design and investigate a proof-of-concept instantiation of contrastive-signal-dependent plasticity (CSDP), a neuromorphic form of forward-forward-based, backpropagation-free learning.
arXiv Detail & Related papers (2024-09-17T04:48:45Z) - Enhancing learning in spiking neural networks through neuronal heterogeneity and neuromodulatory signaling [52.06722364186432]
We propose a biologically-informed framework for enhancing artificial neural networks (ANNs)
Our proposed dual-framework approach highlights the potential of spiking neural networks (SNNs) for emulating diverse spiking behaviors.
We outline how the proposed approach integrates brain-inspired compartmental models and task-driven SNNs, bioinspiration and complexity.
arXiv Detail & Related papers (2024-07-05T14:11:28Z) - Brain-Inspired Machine Intelligence: A Survey of
Neurobiologically-Plausible Credit Assignment [65.268245109828]
We examine algorithms for conducting credit assignment in artificial neural networks that are inspired or motivated by neurobiology.
We organize the ever-growing set of brain-inspired learning schemes into six general families and consider these in the context of backpropagation of errors.
The results of this review are meant to encourage future developments in neuro-mimetic systems and their constituent learning processes.
arXiv Detail & Related papers (2023-12-01T05:20:57Z) - Learning to Act through Evolution of Neural Diversity in Random Neural
Networks [9.387749254963595]
In most artificial neural networks (ANNs), neural computation is abstracted to an activation function that is usually shared between all neurons.
We propose the optimization of neuro-centric parameters to attain a set of diverse neurons that can perform complex computations.
arXiv Detail & Related papers (2023-05-25T11:33:04Z) - Toward stochastic neural computing [11.955322183964201]
We propose a theory of neural computing in which streams of noisy inputs are transformed and processed through populations of spiking neurons.
We demonstrate the application of our method to Intel's Loihi neuromorphic hardware.
arXiv Detail & Related papers (2023-05-23T12:05:35Z) - Contrastive-Signal-Dependent Plasticity: Self-Supervised Learning in Spiking Neural Circuits [61.94533459151743]
This work addresses the challenge of designing neurobiologically-motivated schemes for adjusting the synapses of spiking networks.
Our experimental simulations demonstrate a consistent advantage over other biologically-plausible approaches when training recurrent spiking networks.
arXiv Detail & Related papers (2023-03-30T02:40:28Z) - POPPINS : A Population-Based Digital Spiking Neuromorphic Processor with
Integer Quadratic Integrate-and-Fire Neurons [50.591267188664666]
We propose a population-based digital spiking neuromorphic processor in 180nm process technology with two hierarchy populations.
The proposed approach enables the developments of biomimetic neuromorphic system and various low-power, and low-latency inference processing applications.
arXiv Detail & Related papers (2022-01-19T09:26:34Z) - A multi-agent model for growing spiking neural networks [0.0]
This project has explored rules for growing the connections between the neurons in Spiking Neural Networks as a learning mechanism.
Results in a simulation environment showed that for a given set of parameters it is possible to reach topologies that reproduce the tested functions.
This project also opens the door to the usage of techniques like genetic algorithms for obtaining the best suited values for the model parameters.
arXiv Detail & Related papers (2020-09-21T15:11:29Z) - Training spiking neural networks using reinforcement learning [0.0]
We propose biologically-plausible alternatives to backpropagation to facilitate the training of spiking neural networks.
We focus on investigating the candidacy of reinforcement learning rules in solving the spatial and temporal credit assignment problems.
We compare and contrast the two approaches by applying them to traditional RL domains such as gridworld, cartpole and mountain car.
arXiv Detail & Related papers (2020-05-12T17:40:36Z) - Spiking Neural Networks Hardware Implementations and Challenges: a
Survey [53.429871539789445]
Spiking Neural Networks are cognitive algorithms mimicking neuron and synapse operational principles.
We present the state of the art of hardware implementations of spiking neural networks.
We discuss the strategies employed to leverage the characteristics of these event-driven algorithms at the hardware level.
arXiv Detail & Related papers (2020-05-04T13:24:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.