Learning to Act through Evolution of Neural Diversity in Random Neural
Networks
- URL: http://arxiv.org/abs/2305.15945v2
- Date: Thu, 8 Jun 2023 18:26:36 GMT
- Title: Learning to Act through Evolution of Neural Diversity in Random Neural
Networks
- Authors: Joachim Winther Pedersen and Sebastian Risi
- Abstract summary: In most artificial neural networks (ANNs), neural computation is abstracted to an activation function that is usually shared between all neurons.
We propose the optimization of neuro-centric parameters to attain a set of diverse neurons that can perform complex computations.
- Score: 9.387749254963595
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Biological nervous systems consist of networks of diverse, sophisticated
information processors in the form of neurons of different classes. In most
artificial neural networks (ANNs), neural computation is abstracted to an
activation function that is usually shared between all neurons within a layer
or even the whole network; training of ANNs focuses on synaptic optimization.
In this paper, we propose the optimization of neuro-centric parameters to
attain a set of diverse neurons that can perform complex computations.
Demonstrating the promise of the approach, we show that evolving neural
parameters alone allows agents to solve various reinforcement learning tasks
without optimizing any synaptic weights. While not aiming to be an accurate
biological model, parameterizing neurons to a larger degree than the current
common practice, allows us to ask questions about the computational abilities
afforded by neural diversity in random neural networks. The presented results
open up interesting future research directions, such as combining evolved
neural diversity with activity-dependent plasticity.
Related papers
- Retinal Vessel Segmentation via Neuron Programming [17.609169389489633]
This paper introduces a novel approach to neural network design, termed neuron programming'', to enhance a network's representation ability at the neuronal level.
Comprehensive experiments validate that neuron programming can achieve competitive performance in retinal blood segmentation.
arXiv Detail & Related papers (2024-11-17T16:03:30Z) - Enhancing learning in spiking neural networks through neuronal heterogeneity and neuromodulatory signaling [52.06722364186432]
We propose a biologically-informed framework for enhancing artificial neural networks (ANNs)
Our proposed dual-framework approach highlights the potential of spiking neural networks (SNNs) for emulating diverse spiking behaviors.
We outline how the proposed approach integrates brain-inspired compartmental models and task-driven SNNs, bioinspiration and complexity.
arXiv Detail & Related papers (2024-07-05T14:11:28Z) - Hebbian Learning based Orthogonal Projection for Continual Learning of
Spiking Neural Networks [74.3099028063756]
We develop a new method with neuronal operations based on lateral connections and Hebbian learning.
We show that Hebbian and anti-Hebbian learning on recurrent lateral connections can effectively extract the principal subspace of neural activities.
Our method consistently solves for spiking neural networks with nearly zero forgetting.
arXiv Detail & Related papers (2024-02-19T09:29:37Z) - Brain-Inspired Machine Intelligence: A Survey of
Neurobiologically-Plausible Credit Assignment [65.268245109828]
We examine algorithms for conducting credit assignment in artificial neural networks that are inspired or motivated by neurobiology.
We organize the ever-growing set of brain-inspired learning schemes into six general families and consider these in the context of backpropagation of errors.
The results of this review are meant to encourage future developments in neuro-mimetic systems and their constituent learning processes.
arXiv Detail & Related papers (2023-12-01T05:20:57Z) - Contrastive-Signal-Dependent Plasticity: Self-Supervised Learning in Spiking Neural Circuits [61.94533459151743]
This work addresses the challenge of designing neurobiologically-motivated schemes for adjusting the synapses of spiking networks.
Our experimental simulations demonstrate a consistent advantage over other biologically-plausible approaches when training recurrent spiking networks.
arXiv Detail & Related papers (2023-03-30T02:40:28Z) - Towards NeuroAI: Introducing Neuronal Diversity into Artificial Neural
Networks [20.99799416963467]
In the human brain, neuronal diversity is an enabling factor for all kinds of biological intelligent behaviors.
In this Primer, we first discuss the preliminaries of biological neuronal diversity and the characteristics of information transmission and processing in a biological neuron.
arXiv Detail & Related papers (2023-01-23T02:23:45Z) - Constraints on the design of neuromorphic circuits set by the properties
of neural population codes [61.15277741147157]
In the brain, information is encoded, transmitted and used to inform behaviour.
Neuromorphic circuits need to encode information in a way compatible to that used by populations of neuron in the brain.
arXiv Detail & Related papers (2022-12-08T15:16:04Z) - Brain-inspired Graph Spiking Neural Networks for Commonsense Knowledge
Representation and Reasoning [11.048601659933249]
How neural networks in the human brain represent commonsense knowledge is an important research topic in neuroscience, cognitive science, psychology, and artificial intelligence.
This work investigates how population encoding and spiking timing-dependent plasticity (STDP) mechanisms can be integrated into the learning of spiking neural networks.
The neuron populations of different communities together constitute the entire commonsense knowledge graph, forming a giant graph spiking neural network.
arXiv Detail & Related papers (2022-07-11T05:22:38Z) - POPPINS : A Population-Based Digital Spiking Neuromorphic Processor with
Integer Quadratic Integrate-and-Fire Neurons [50.591267188664666]
We propose a population-based digital spiking neuromorphic processor in 180nm process technology with two hierarchy populations.
The proposed approach enables the developments of biomimetic neuromorphic system and various low-power, and low-latency inference processing applications.
arXiv Detail & Related papers (2022-01-19T09:26:34Z) - Training spiking neural networks using reinforcement learning [0.0]
We propose biologically-plausible alternatives to backpropagation to facilitate the training of spiking neural networks.
We focus on investigating the candidacy of reinforcement learning rules in solving the spatial and temporal credit assignment problems.
We compare and contrast the two approaches by applying them to traditional RL domains such as gridworld, cartpole and mountain car.
arXiv Detail & Related papers (2020-05-12T17:40:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.