論文の概要: Probing Classifiers: Promises, Shortcomings, and Alternatives
- arxiv url: http://arxiv.org/abs/2102.12452v1
- Date: Wed, 24 Feb 2021 18:36:14 GMT
- ステータス: 処理完了
- システム内更新日: 2021-02-25 13:33:27.888555
- Title: Probing Classifiers: Promises, Shortcomings, and Alternatives
- Title(参考訳): Probing Classifiers:Promises, Shortcomings, and Alternatives
- Authors: Yonatan Belinkov
- Abstract要約: 探索型分類器は自然言語処理のディープニューラルネットワークモデルを解釈・解析するための重要な手法の1つである。
この記事では、Probing Classifiersフレームワークを批判的にレビューし、欠点、改善、代替アプローチを強調します。
- 参考スコア(独自算出の注目度): 28.877572447481683
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Probing classifiers have emerged as one of the prominent methodologies for
interpreting and analyzing deep neural network models of natural language
processing. The basic idea is simple -- a classifier is trained to predict some
linguistic property from a model's representations -- and has been used to
examine a wide variety of models and properties. However, recent studies have
demonstrated various methodological weaknesses of this approach. This article
critically reviews the probing classifiers framework, highlighting
shortcomings, improvements, and alternative approaches.
- Abstract(参考訳): 探索型分類器は自然言語処理のディープニューラルネットワークモデルを解釈・解析するための重要な手法の1つである。
基本的な考え方は単純で、分類器はモデルの表現から言語特性を予測するために訓練され、様々なモデルや特性を調べるために使われてきた。
しかし、近年の研究では、このアプローチの様々な方法論的弱点が示されている。
この記事では、Probing Classifiersフレームワークを批判的にレビューし、欠点、改善、代替アプローチを強調します。
関連論文リスト
- Detecting Statements in Text: A Domain-Agnostic Few-Shot Solution [1.3654846342364308]
最先端のアプローチは通常、作成にコストがかかる大規模な注釈付きデータセット上の微調整モデルを含む。
本稿では,クレームに基づくテキスト分類タスクの共通パラダイムとして,定性的で多目的な少ショット学習手法の提案とリリースを行う。
本手法は,気候変動対策,トピック/スタンス分類,うつ病関連症状検出の3つの課題の文脈で説明する。
論文 参考訳(メタデータ) (2024-05-09T12:03:38Z) - Investigating Ensemble Methods for Model Robustness Improvement of Text
Classifiers [66.36045164286854]
既存のバイアス機能を分析し、すべてのケースに最適なモデルが存在しないことを実証します。
適切なバイアスモデルを選択することで、より洗練されたモデル設計でベースラインよりもロバスト性が得られる。
論文 参考訳(メタデータ) (2022-10-28T17:52:10Z) - An Additive Instance-Wise Approach to Multi-class Model Interpretation [53.87578024052922]
解釈可能な機械学習は、ブラックボックスシステムの特定の予測を駆動する要因に関する洞察を提供する。
既存の手法は主に、局所的な加法的あるいはインスタンス的なアプローチに従う説明的入力特徴の選択に重点を置いている。
本研究は,両手法の長所を生かし,複数の対象クラスに対する局所的な説明を同時に学習するためのグローバルフレームワークを提案する。
論文 参考訳(メタデータ) (2022-07-07T06:50:27Z) - Probing via Prompting [71.7904179689271]
本稿では,探索をプロンプトタスクとして定式化することで,新しいモデルフリーな探索手法を提案する。
我々は5つの探索課題について実験を行い、我々のアプローチが診断プローブよりも情報抽出に優れていることを示す。
次に,その特性に不可欠な頭部を除去し,言語モデリングにおけるモデルの性能を評価することにより,事前学習のための特定の言語特性の有用性を検討する。
論文 参考訳(メタデータ) (2022-07-04T22:14:40Z) - Hierarchical Interpretation of Neural Text Classification [31.95426448656938]
本稿では,Hintと呼ばれる階層型インタプリタ型ニューラルテキスト分類器を提案する。
レビューデータセットとニュースデータセットの両方の実験結果から,提案手法は既存の最先端テキスト分類器と同等のテキスト分類結果が得られることが示された。
論文 参考訳(メタデータ) (2022-02-20T11:15:03Z) - Learning Debiased and Disentangled Representations for Semantic
Segmentation [52.35766945827972]
セマンティックセグメンテーションのためのモデルに依存しない訓練手法を提案する。
各トレーニングイテレーションで特定のクラス情報をランダムに除去することにより、クラス間の機能依存を効果的に削減する。
提案手法で訓練したモデルは,複数のセマンティックセグメンテーションベンチマークにおいて強い結果を示す。
論文 参考訳(メタデータ) (2021-10-31T16:15:09Z) - Interpreting Deep Learning Models in Natural Language Processing: A
Review [33.80537635077772]
ニューラルネットワークモデルに対する長年にわたる批判は、解釈可能性の欠如である。
本研究では,NLPにおけるニューラルモデルに対する様々な解釈手法について概説する。
論文 参考訳(メタデータ) (2021-10-20T10:17:04Z) - Evaluating Saliency Methods for Neural Language Models [9.309351023703018]
サリエンシ法はニューラルネットワーク予測の解釈に広く用いられている。
同じモデルによって行われた同じ予測の解釈でさえ、異なるサリエンシー方法のバリエーションは一致しません。
我々は,NLPモデルの基本カテゴリであるニューラル言語モデルに基づいて,サリエンシ手法の包括的,定量的評価を行う。
論文 参考訳(メタデータ) (2021-04-12T21:19:48Z) - On the Transferability of Adversarial Attacksagainst Neural Text
Classifier [121.6758865857686]
テキスト分類モデルの逆例の転送可能性について検討する。
本稿では,ほとんどすべての既存モデルを騙すために,敵の例を誘導できるモデル群を見つける遺伝的アルゴリズムを提案する。
これらの逆例からモデル診断に使用できる単語置換規則を導出する。
論文 参考訳(メタデータ) (2020-11-17T10:45:05Z) - Few-shot Classification via Adaptive Attention [93.06105498633492]
ごく少数の参照サンプルに基づいて,クエリサンプル表現を最適化し,高速に適応する新しい数ショット学習手法を提案する。
実験で実証したように,提案モデルでは,様々なベンチマーク数ショット分類と微粒化認識データセットを用いて,最先端の分類結果を達成している。
論文 参考訳(メタデータ) (2020-08-06T05:52:59Z) - Overestimation of Syntactic Representationin Neural Language Models [16.765097098482286]
構文構造を誘導するモデルの能力を決定する一般的な方法の1つは、テンプレートに従って生成された文字列上でモデルを訓練し、それらの文字列と表面的に類似した文字列を異なる構文で区別するモデルの能力をテストすることである。
本稿では,2つの非シンタクティックなベースライン言語モデルを用いた最近の論文の肯定的な結果を再現することで,このアプローチの根本的な問題を説明する。
論文 参考訳(メタデータ) (2020-04-10T15:13:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。