Probing Classifiers: Promises, Shortcomings, and Alternatives
- URL: http://arxiv.org/abs/2102.12452v1
- Date: Wed, 24 Feb 2021 18:36:14 GMT
- Title: Probing Classifiers: Promises, Shortcomings, and Alternatives
- Authors: Yonatan Belinkov
- Abstract summary: Probing classifiers have emerged as one of the prominent methodologies for interpreting and analyzing deep neural network models of natural language processing.
This article critically reviews the probing classifiers framework, highlighting shortcomings, improvements, and alternative approaches.
- Score: 28.877572447481683
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Probing classifiers have emerged as one of the prominent methodologies for
interpreting and analyzing deep neural network models of natural language
processing. The basic idea is simple -- a classifier is trained to predict some
linguistic property from a model's representations -- and has been used to
examine a wide variety of models and properties. However, recent studies have
demonstrated various methodological weaknesses of this approach. This article
critically reviews the probing classifiers framework, highlighting
shortcomings, improvements, and alternative approaches.
Related papers
- Detecting Statements in Text: A Domain-Agnostic Few-Shot Solution [1.3654846342364308]
State-of-the-art approaches usually involve fine-tuning models on large annotated datasets, which are costly to produce.
We propose and release a qualitative and versatile few-shot learning methodology as a common paradigm for any claim-based textual classification task.
We illustrate this methodology in the context of three tasks: climate change contrarianism detection, topic/stance classification and depression-relates symptoms detection.
arXiv Detail & Related papers (2024-05-09T12:03:38Z) - Investigating Ensemble Methods for Model Robustness Improvement of Text
Classifiers [66.36045164286854]
We analyze a set of existing bias features and demonstrate there is no single model that works best for all the cases.
By choosing an appropriate bias model, we can obtain a better robustness result than baselines with a more sophisticated model design.
arXiv Detail & Related papers (2022-10-28T17:52:10Z) - An Additive Instance-Wise Approach to Multi-class Model Interpretation [53.87578024052922]
Interpretable machine learning offers insights into what factors drive a certain prediction of a black-box system.
Existing methods mainly focus on selecting explanatory input features, which follow either locally additive or instance-wise approaches.
This work exploits the strengths of both methods and proposes a global framework for learning local explanations simultaneously for multiple target classes.
arXiv Detail & Related papers (2022-07-07T06:50:27Z) - Probing via Prompting [71.7904179689271]
This paper introduces a novel model-free approach to probing, by formulating probing as a prompting task.
We conduct experiments on five probing tasks and show that our approach is comparable or better at extracting information than diagnostic probes.
We then examine the usefulness of a specific linguistic property for pre-training by removing the heads that are essential to that property and evaluating the resulting model's performance on language modeling.
arXiv Detail & Related papers (2022-07-04T22:14:40Z) - Hierarchical Interpretation of Neural Text Classification [31.95426448656938]
This paper proposes a novel Hierarchical INTerpretable neural text classifier, called Hint, which can automatically generate explanations of model predictions.
Experimental results on both review datasets and news datasets show that our proposed approach achieves text classification results on par with existing state-of-the-art text classifiers.
arXiv Detail & Related papers (2022-02-20T11:15:03Z) - Learning Debiased and Disentangled Representations for Semantic
Segmentation [52.35766945827972]
We propose a model-agnostic and training scheme for semantic segmentation.
By randomly eliminating certain class information in each training iteration, we effectively reduce feature dependencies among classes.
Models trained with our approach demonstrate strong results on multiple semantic segmentation benchmarks.
arXiv Detail & Related papers (2021-10-31T16:15:09Z) - Interpreting Deep Learning Models in Natural Language Processing: A
Review [33.80537635077772]
A long-standing criticism against neural network models is the lack of interpretability.
In this survey, we provide a comprehensive review of various interpretation methods for neural models in NLP.
arXiv Detail & Related papers (2021-10-20T10:17:04Z) - Evaluating Saliency Methods for Neural Language Models [9.309351023703018]
Saliency methods are widely used to interpret neural network predictions.
Different variants of saliency methods disagree even on the interpretations of the same prediction made by the same model.
We conduct a comprehensive and quantitative evaluation of saliency methods on a fundamental category of NLP models: neural language models.
arXiv Detail & Related papers (2021-04-12T21:19:48Z) - On the Transferability of Adversarial Attacksagainst Neural Text
Classifier [121.6758865857686]
We investigate the transferability of adversarial examples for text classification models.
We propose a genetic algorithm to find an ensemble of models that can induce adversarial examples to fool almost all existing models.
We derive word replacement rules that can be used for model diagnostics from these adversarial examples.
arXiv Detail & Related papers (2020-11-17T10:45:05Z) - Few-shot Classification via Adaptive Attention [93.06105498633492]
We propose a novel few-shot learning method via optimizing and fast adapting the query sample representation based on very few reference samples.
As demonstrated experimentally, the proposed model achieves state-of-the-art classification results on various benchmark few-shot classification and fine-grained recognition datasets.
arXiv Detail & Related papers (2020-08-06T05:52:59Z) - Overestimation of Syntactic Representationin Neural Language Models [16.765097098482286]
One popular method for determining a model's ability to induce syntactic structure trains a model on strings generated according to a template then tests the model's ability to distinguish such strings from superficially similar ones with different syntax.
We illustrate a fundamental problem with this approach by reproducing positive results from a recent paper with two non-syntactic baseline language models.
arXiv Detail & Related papers (2020-04-10T15:13:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.