Imitation Learning for Robust and Safe Real-time Motion Planning: A
Contraction Theory Approach
- URL: http://arxiv.org/abs/2102.12668v1
- Date: Thu, 25 Feb 2021 03:47:15 GMT
- Title: Imitation Learning for Robust and Safe Real-time Motion Planning: A
Contraction Theory Approach
- Authors: Hiroyasu Tsukamoto and Soon-Jo Chung
- Abstract summary: LAG-ROS is a real-time robust motion planning algorithm for safety-critical nonlinear systems perturbed by bounded disturbances.
The LAG-ROS achieves higher control performance and task success rate with faster execution speed for real-time computation.
- Score: 9.35511513240868
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper presents Learning-based Autonomous Guidance with Robustness,
Optimality, and Safety guarantees (LAG-ROS), a real-time robust motion planning
algorithm for safety-critical nonlinear systems perturbed by bounded
disturbances. The LAG-ROS method consists of three phases: 1) Control Lyapunov
Function (CLF) construction via contraction theory; 2) imitation learning of
the CLF-based robust feedback motion planner; and 3) its real-time and
decentralized implementation with a learning-based model predictive safety
filter. For the CLF, we exploit a neural-network-based method of Neural
Contraction Metrics (NCMs), which provides a differential Lyapunov function to
minimize an upper bound of the steady-state Euclidean distance between
perturbed and unperturbed system trajectories. The NCM ensures the perturbed
state to stay in bounded error tubes around given desired trajectories, where
we sample training data for imitation learning of the NCM-CLF-based robust
centralized motion planner. Using local observations in training also enables
its decentralized implementation. Simulation results for perturbed nonlinear
systems show that the LAG-ROS achieves higher control performance and task
success rate with faster execution speed for real-time computation, when
compared with the existing real-time robust MPC and learning-based feedforward
motion planners.
Related papers
- Learning to Boost the Performance of Stable Nonlinear Systems [0.0]
We tackle the performance-boosting problem with closed-loop stability guarantees.
Our methods enable learning over arbitrarily deep neural network classes of performance-boosting controllers for stable nonlinear systems.
arXiv Detail & Related papers (2024-05-01T21:11:29Z) - Stragglers-Aware Low-Latency Synchronous Federated Learning via Layer-Wise Model Updates [71.81037644563217]
Synchronous federated learning (FL) is a popular paradigm for collaborative edge learning.
As some of the devices may have limited computational resources and varying availability, FL latency is highly sensitive to stragglers.
We propose straggler-aware layer-wise federated learning (SALF) that leverages the optimization procedure of NNs via backpropagation to update the global model in a layer-wise fashion.
arXiv Detail & Related papers (2024-03-27T09:14:36Z) - Integrating DeepRL with Robust Low-Level Control in Robotic Manipulators for Non-Repetitive Reaching Tasks [0.24578723416255746]
In robotics, contemporary strategies are learning-based, characterized by a complex black-box nature and a lack of interpretability.
We propose integrating a collision-free trajectory planner based on deep reinforcement learning (DRL) with a novel auto-tuning low-level control strategy.
arXiv Detail & Related papers (2024-02-04T15:54:03Z) - InferAligner: Inference-Time Alignment for Harmlessness through
Cross-Model Guidance [56.184255657175335]
We develop textbfInferAligner, a novel inference-time alignment method that utilizes cross-model guidance for harmlessness alignment.
Experimental results show that our method can be very effectively applied to domain-specific models in finance, medicine, and mathematics.
It significantly diminishes the Attack Success Rate (ASR) of both harmful instructions and jailbreak attacks, while maintaining almost unchanged performance in downstream tasks.
arXiv Detail & Related papers (2024-01-20T10:41:03Z) - Accelerated Policy Learning with Parallel Differentiable Simulation [59.665651562534755]
We present a differentiable simulator and a new policy learning algorithm (SHAC)
Our algorithm alleviates problems with local minima through a smooth critic function.
We show substantial improvements in sample efficiency and wall-clock time over state-of-the-art RL and differentiable simulation-based algorithms.
arXiv Detail & Related papers (2022-04-14T17:46:26Z) - Guaranteed Trajectory Tracking under Learned Dynamics with Contraction Metrics and Disturbance Estimation [5.147919654191323]
This paper presents an approach to trajectory-centric learning control based on contraction metrics and disturbance estimation.
The proposed framework is validated on a planar quadrotor example.
arXiv Detail & Related papers (2021-12-15T15:57:33Z) - A Theoretical Overview of Neural Contraction Metrics for Learning-based
Control with Guaranteed Stability [7.963506386866862]
This paper presents a neural network model of an optimal contraction metric and corresponding differential Lyapunov function.
Its innovation lies in providing formal robustness guarantees for learning-based control frameworks.
arXiv Detail & Related papers (2021-10-02T00:28:49Z) - Trajectory Planning for Autonomous Vehicles Using Hierarchical
Reinforcement Learning [21.500697097095408]
Planning safe trajectories under uncertain and dynamic conditions makes the autonomous driving problem significantly complex.
Current sampling-based methods such as Rapidly Exploring Random Trees (RRTs) are not ideal for this problem because of the high computational cost.
We propose a Hierarchical Reinforcement Learning structure combined with a Proportional-Integral-Derivative (PID) controller for trajectory planning.
arXiv Detail & Related papers (2020-11-09T20:49:54Z) - Reinforcement Learning for Low-Thrust Trajectory Design of
Interplanetary Missions [77.34726150561087]
This paper investigates the use of reinforcement learning for the robust design of interplanetary trajectories in presence of severe disturbances.
An open-source implementation of the state-of-the-art algorithm Proximal Policy Optimization is adopted.
The resulting Guidance and Control Network provides both a robust nominal trajectory and the associated closed-loop guidance law.
arXiv Detail & Related papers (2020-08-19T15:22:15Z) - Online Reinforcement Learning Control by Direct Heuristic Dynamic
Programming: from Time-Driven to Event-Driven [80.94390916562179]
Time-driven learning refers to the machine learning method that updates parameters in a prediction model continuously as new data arrives.
It is desirable to prevent the time-driven dHDP from updating due to insignificant system event such as noise.
We show how the event-driven dHDP algorithm works in comparison to the original time-driven dHDP.
arXiv Detail & Related papers (2020-06-16T05:51:25Z) - Chance-Constrained Trajectory Optimization for Safe Exploration and
Learning of Nonlinear Systems [81.7983463275447]
Learning-based control algorithms require data collection with abundant supervision for training.
We present a new approach for optimal motion planning with safe exploration that integrates chance-constrained optimal control with dynamics learning and feedback control.
arXiv Detail & Related papers (2020-05-09T05:57:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.