Guaranteed Trajectory Tracking under Learned Dynamics with Contraction Metrics and Disturbance Estimation
- URL: http://arxiv.org/abs/2112.08222v5
- Date: Wed, 24 Jul 2024 01:06:36 GMT
- Title: Guaranteed Trajectory Tracking under Learned Dynamics with Contraction Metrics and Disturbance Estimation
- Authors: Pan Zhao, Ziyao Guo, Yikun Cheng, Aditya Gahlawat, Hyungsoo Kang, Naira Hovakimyan,
- Abstract summary: This paper presents an approach to trajectory-centric learning control based on contraction metrics and disturbance estimation.
The proposed framework is validated on a planar quadrotor example.
- Score: 5.147919654191323
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper presents an approach to trajectory-centric learning control based on contraction metrics and disturbance estimation for nonlinear systems subject to matched uncertainties. The approach uses deep neural networks to learn uncertain dynamics while still providing guarantees of transient tracking performance throughout the learning phase. Within the proposed approach, a disturbance estimation law is adopted to estimate the pointwise value of the uncertainty, with pre-computable estimation error bounds (EEBs). The learned dynamics, the estimated disturbances, and the EEBs are then incorporated in a robust Riemann energy condition to compute the control law that guarantees exponential convergence of actual trajectories to desired ones throughout the learning phase, even when the learned model is poor. On the other hand, with improved accuracy, the learned model can help improve the robustness of the tracking controller, e.g., against input delays, and can be incorporated to plan better trajectories with improved performance, e.g., lower energy consumption and shorter travel time.The proposed framework is validated on a planar quadrotor example.
Related papers
- Selective Learning: Towards Robust Calibration with Dynamic Regularization [79.92633587914659]
Miscalibration in deep learning refers to there is a discrepancy between the predicted confidence and performance.
We introduce Dynamic Regularization (DReg) which aims to learn what should be learned during training thereby circumventing the confidence adjusting trade-off.
arXiv Detail & Related papers (2024-02-13T11:25:20Z) - Provable Guarantees for Generative Behavior Cloning: Bridging Low-Level
Stability and High-Level Behavior [51.60683890503293]
We propose a theoretical framework for studying behavior cloning of complex expert demonstrations using generative modeling.
We show that pure supervised cloning can generate trajectories matching the per-time step distribution of arbitrary expert trajectories.
arXiv Detail & Related papers (2023-07-27T04:27:26Z) - Constrained Reinforcement Learning using Distributional Representation for Trustworthy Quadrotor UAV Tracking Control [2.325021848829375]
We propose a novel trajectory tracker integrating a Distributional Reinforcement Learning disturbance estimator for unknown aerodynamic effects.
The proposed estimator Constrained Distributional Reinforced disturbance estimator' (ConsDRED) accurately identifies uncertainties between true and estimated values of aerodynamic effects.
We demonstrate our system improves accumulative tracking errors by at least 70% compared with the recent art.
arXiv Detail & Related papers (2023-02-22T23:15:56Z) - Statistical Safety and Robustness Guarantees for Feedback Motion
Planning of Unknown Underactuated Stochastic Systems [1.0323063834827415]
We propose a sampling-based planner that uses the mean dynamics model and simultaneously bounds the closed-loop tracking error via a learned disturbance bound.
We validate that our guarantees translate to empirical safety in simulation on a 10D quadrotor, and in the real world on a physical CrazyFlie quadrotor and Clearpath Jackal robot.
arXiv Detail & Related papers (2022-12-13T19:38:39Z) - Interpretable Stochastic Model Predictive Control using Distributional
Reinforced Estimation for Quadrotor Tracking Systems [0.8411385346896411]
We present a novel trajectory tracker for autonomous quadrotor navigation in dynamic and complex environments.
The proposed framework integrates a distributional Reinforcement Learning estimator for unknown aerodynamic effects into a Model Predictive Controller.
We demonstrate our system to improve the cumulative tracking errors by at least 66% with unknown and diverse aerodynamic forces.
arXiv Detail & Related papers (2022-05-14T23:27:38Z) - Robust Learning via Persistency of Excitation [4.674053902991301]
We show that network training using gradient descent is equivalent to a dynamical system parameter estimation problem.
We provide an efficient technique for estimating the corresponding Lipschitz constant using extreme value theory.
Our approach also universally increases the adversarial accuracy by 0.1% to 0.3% points in various state-of-the-art adversarially trained models.
arXiv Detail & Related papers (2021-06-03T18:49:05Z) - Probabilistic robust linear quadratic regulators with Gaussian processes [73.0364959221845]
Probabilistic models such as Gaussian processes (GPs) are powerful tools to learn unknown dynamical systems from data for subsequent use in control design.
We present a novel controller synthesis for linearized GP dynamics that yields robust controllers with respect to a probabilistic stability margin.
arXiv Detail & Related papers (2021-05-17T08:36:18Z) - Adaptive Degradation Process with Deep Learning-Driven Trajectory [5.060233857860902]
Remaining useful life (RUL) estimation is a crucial component in the implementation of intelligent predictive maintenance and health management.
This paper develops a hybrid DNN-based prognostic approach, where a Wiener-based-degradation model is enhanced with adaptive drift to characterize the system degradation.
An LSTM-CNN encoder-decoder is developed to predict future degradation trajectories by jointly learning noise coefficients as well as drift coefficients, and adaptive drift is updated via Bayesian inference.
arXiv Detail & Related papers (2021-03-22T06:00:42Z) - A Regret Minimization Approach to Iterative Learning Control [61.37088759497583]
We propose a new performance metric, planning regret, which replaces the standard uncertainty assumptions with worst case regret.
We provide theoretical and empirical evidence that the proposed algorithm outperforms existing methods on several benchmarks.
arXiv Detail & Related papers (2021-02-26T13:48:49Z) - Adaptive Gradient Method with Resilience and Momentum [120.83046824742455]
We propose an Adaptive Gradient Method with Resilience and Momentum (AdaRem)
AdaRem adjusts the parameter-wise learning rate according to whether the direction of one parameter changes in the past is aligned with the direction of the current gradient.
Our method outperforms previous adaptive learning rate-based algorithms in terms of the training speed and the test error.
arXiv Detail & Related papers (2020-10-21T14:49:00Z) - Reinforcement Learning for Low-Thrust Trajectory Design of
Interplanetary Missions [77.34726150561087]
This paper investigates the use of reinforcement learning for the robust design of interplanetary trajectories in presence of severe disturbances.
An open-source implementation of the state-of-the-art algorithm Proximal Policy Optimization is adopted.
The resulting Guidance and Control Network provides both a robust nominal trajectory and the associated closed-loop guidance law.
arXiv Detail & Related papers (2020-08-19T15:22:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.