Photon induced atom recoil in collectively interacting planar arrays
- URL: http://arxiv.org/abs/2102.13354v2
- Date: Sun, 16 May 2021 00:26:09 GMT
- Title: Photon induced atom recoil in collectively interacting planar arrays
- Authors: Deepak A. Suresh, F. Robicheaux
- Abstract summary: recoil experienced by a subradiant collective decay is substantially larger than from independent atom decay.
A method to calculate the rate of recoil when steady state has been achieved with a constant influx of photons is also described.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The recoil of atoms in arrays due to the emission or absorption of photons is
studied for sub-wavelength interatomic spacing. The atoms in the array interact
with each other through collective dipole-dipole interactions and with the
incident laser field in the low intensity limit. Shining uniform light on the
array gives rise to patterns of excitation and recoil in the array. These arise
due to the interference of different eigenmodes of excitation. The relation
between the recoil and the decay dynamics is studied when the array is in its
excitation eigenstates. The recoil experienced by a subradiant collective decay
is substantially larger than from independent atom decay. A method to calculate
the rate of recoil when steady state has been achieved with a constant influx
of photons is also described.
Related papers
- Dissipative transfer of quantum correlations from light to atomic arrays [0.0]
We consider an atomic array illuminated by a paraxial beam of a squeezed-vacuum field.
quantum-squeezing correlations are dissipatively transferred to the array atoms, resulting in an atomic spin-squeezed steady state.
We discuss applications in atomic clocks both in optical and microwave domains.
arXiv Detail & Related papers (2023-11-07T11:22:58Z) - Analyzing the collective emission of a Rydberg-blockaded single-photon
source based on an ensemble of thermal atoms [0.0]
We numerically study the feasibility of a single-photon source in a hot vapor of Rubidium atoms in a micro cell.
For the excitation process with three rectangular lasers pulses, we simulate the coherent dynamics of the system in a truncated Hilbert space.
We find that the collective decay of the single-excitation leads to a fast and directed photon emission and further, that a pulse sequence similar to a spin echo increases the directionality of the photon.
arXiv Detail & Related papers (2023-03-07T14:43:27Z) - Two-photon pulse scattering spectroscopy for arrays of two-level atoms,
coupled to the waveguide [125.99533416395765]
We have theoretically studied the scattering of two-photon pulses from a spatially-separated array of two-level atoms coupled to a waveguide.
The contributions of various single-eigenstate and double-excited eigenstates of the array have been analyzed.
arXiv Detail & Related papers (2023-02-27T22:05:07Z) - Entanglement of annihilation photons [141.5628276096321]
We present the results of a new experimental study of the quantum entanglement of photon pairs produced in positron-electron annihilation at rest.
Despite numerous measurements, there is still no experimental proof of the entanglement of photons.
arXiv Detail & Related papers (2022-10-14T08:21:55Z) - Correlated steady states and Raman lasing in continuously pumped and
probed atomic ensembles [68.8204255655161]
We consider an ensemble of Alkali atoms that are continuously optically pumped and probed.
Due to the collective scattering of photons at large optical depth, the steady state of atoms does not correspond to an uncorrelated tensor-product state.
We find and characterize regimes of Raman lasing, akin to the model of a superradiant laser.
arXiv Detail & Related papers (2022-05-10T06:54:54Z) - Atom recoil in collectively interacting dipoles using quantized
vibrational states [0.0]
The recoil of atoms in dense ensembles during light matter interactions is studied using quantized vibrational states for the atomic motion.
The contributions to the recoil and the dependence on the trap frequency of the different terms of the Hamiltonian and Lindbladian are studied.
arXiv Detail & Related papers (2021-11-29T17:42:45Z) - Tunable Anderson Localization of Dark States [146.2730735143614]
We experimentally study Anderson localization in a superconducting waveguide quantum electrodynamics system.
We observe an exponential suppression of the transmission coefficient in the vicinity of its subradiant dark modes.
The experiment opens the door to the study of various localization phenomena on a new platform.
arXiv Detail & Related papers (2021-05-25T07:52:52Z) - Subradiance in dilute atomic ensembles: Role of pairs and multiple
scattering [0.0]
We study the slow (subradiant) decay of the fluorescence of motionless atoms after a weak pulsed excitation.
We show that, in the linear-optics regime, the slow decay rate can be dominated by close pairs of atoms forming superradiant and subradiant states.
For a large-enough resonant optical depth and at later time, the dynamics is dominated by collective many-body effects.
arXiv Detail & Related papers (2020-12-19T11:10:04Z) - Many-body Signatures of Collective Decay in Atomic Chains [0.0]
We investigate the role of finite interatomic separation on correlated decay in mesoscopic chains.
We show that the superradiant burst survives at small distances, despite Hamiltonian dipole-dipole interactions.
We calculate the two-photon correlation function and demonstrate that emission is correlated and directional, as well as sensitive to small changes in the interatomic distance.
arXiv Detail & Related papers (2020-08-18T20:07:44Z) - Entanglement dynamics in dissipative photonic Mott insulators [62.997667081978825]
In spite of particle losses the quantum entanglement propagation exhibits a ballistic character with propagation speeds related to the differerent quasiparticles that are involved in the dynamics.
Our analysis reveals that photon dissipation has a strikingly asymmetric behavior in the two configurations with a much more dramatic role on the holon entanglement propagation than for the doublon case.
arXiv Detail & Related papers (2020-04-27T15:48:24Z) - Resonant high-energy bremsstrahlung of ultrarelativistic electrons in
the field of a nucleus and a pulsed light wave [68.8204255655161]
Research investigates the resonant high-energy spontaneous bremsstrahlung of ultrarelativistic electrons with considerable energies in the field of a nucleus and a quasimonochromatic laser wave.
arXiv Detail & Related papers (2020-04-05T16:27:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.