Gradient-guided Loss Masking for Neural Machine Translation
- URL: http://arxiv.org/abs/2102.13549v1
- Date: Fri, 26 Feb 2021 15:41:48 GMT
- Title: Gradient-guided Loss Masking for Neural Machine Translation
- Authors: Xinyi Wang, Ankur Bapna, Melvin Johnson, Orhan Firat
- Abstract summary: In this paper, we explore strategies that dynamically optimize data usage during the training process.
Our algorithm calculates the gradient alignment between the training data and the clean data to mask out data with negative alignment.
Experiments on three WMT language pairs show that our method brings significant improvement over strong baselines.
- Score: 27.609155878513334
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: To mitigate the negative effect of low quality training data on the
performance of neural machine translation models, most existing strategies
focus on filtering out harmful data before training starts. In this paper, we
explore strategies that dynamically optimize data usage during the training
process using the model's gradients on a small set of clean data. At each
training step, our algorithm calculates the gradient alignment between the
training data and the clean data to mask out data with negative alignment. Our
method has a natural intuition: good training data should update the model
parameters in a similar direction as the clean data. Experiments on three WMT
language pairs show that our method brings significant improvement over strong
baselines, and the improvements are generalizable across test data from
different domains.
Related papers
- Distilled Datamodel with Reverse Gradient Matching [74.75248610868685]
We introduce an efficient framework for assessing data impact, comprising offline training and online evaluation stages.
Our proposed method achieves comparable model behavior evaluation while significantly speeding up the process compared to the direct retraining method.
arXiv Detail & Related papers (2024-04-22T09:16:14Z) - Negative Preference Optimization: From Catastrophic Collapse to Effective Unlearning [28.059563581973432]
Large Language Models (LLMs) often have sensitive, private, or copyrighted data during pre-training.
LLMs unlearning aims to eliminate the influence of undesirable data from the pre-trained model.
We propose Negative Preference Optimization (NPO) as a simple alignment-inspired method that could efficiently unlearn a target dataset.
arXiv Detail & Related papers (2024-04-08T21:05:42Z) - Unlearning Traces the Influential Training Data of Language Models [31.33791825286853]
This paper presents UnTrac: unlearning traces the influence of a training dataset on the model's performance.
We propose a more scalable approach, UnTrac-Inv, which unlearns a test dataset and evaluates the unlearned model on training datasets.
arXiv Detail & Related papers (2024-01-26T23:17:31Z) - Efficient Online Data Mixing For Language Model Pre-Training [101.45242332613944]
Existing data selection methods suffer from slow and computationally expensive processes.
Data mixing, on the other hand, reduces the complexity of data selection by grouping data points together.
We develop an efficient algorithm for Online Data Mixing (ODM) that combines elements from both data selection and data mixing.
arXiv Detail & Related papers (2023-12-05T00:42:35Z) - Efficient Grammatical Error Correction Via Multi-Task Training and
Optimized Training Schedule [55.08778142798106]
We propose auxiliary tasks that exploit the alignment between the original and corrected sentences.
We formulate each task as a sequence-to-sequence problem and perform multi-task training.
We find that the order of datasets used for training and even individual instances within a dataset may have important effects on the final performance.
arXiv Detail & Related papers (2023-11-20T14:50:12Z) - KAKURENBO: Adaptively Hiding Samples in Deep Neural Network Training [2.8804804517897935]
We propose a method for hiding the least-important samples during the training of deep neural networks.
We adaptively find samples to exclude in a given epoch based on their contribution to the overall learning process.
Our method can reduce total training time by up to 22% impacting accuracy only by 0.4% compared to the baseline.
arXiv Detail & Related papers (2023-10-16T06:19:29Z) - Understanding and Mitigating the Label Noise in Pre-training on
Downstream Tasks [91.15120211190519]
This paper aims to understand the nature of noise in pre-training datasets and to mitigate its impact on downstream tasks.
We propose a light-weight black-box tuning method (NMTune) to affine the feature space to mitigate the malignant effect of noise.
arXiv Detail & Related papers (2023-09-29T06:18:15Z) - D4: Improving LLM Pretraining via Document De-Duplication and
Diversification [38.84592304799403]
We show that careful data selection via pre-trained model embeddings can speed up training.
We also show that repeating data intelligently consistently outperforms baseline training.
arXiv Detail & Related papers (2023-08-23T17:58:14Z) - Exploring Data Redundancy in Real-world Image Classification through
Data Selection [20.389636181891515]
Deep learning models often require large amounts of data for training, leading to increased costs.
We present two data valuation metrics based on Synaptic Intelligence and gradient norms, respectively, to study redundancy in real-world image data.
Online and offline data selection algorithms are then proposed via clustering and grouping based on the examined data values.
arXiv Detail & Related papers (2023-06-25T03:31:05Z) - Minimizing the Accumulated Trajectory Error to Improve Dataset
Distillation [151.70234052015948]
We propose a novel approach that encourages the optimization algorithm to seek a flat trajectory.
We show that the weights trained on synthetic data are robust against the accumulated errors perturbations with the regularization towards the flat trajectory.
Our method, called Flat Trajectory Distillation (FTD), is shown to boost the performance of gradient-matching methods by up to 4.7%.
arXiv Detail & Related papers (2022-11-20T15:49:11Z) - Omni-supervised Facial Expression Recognition via Distilled Data [120.11782405714234]
We propose omni-supervised learning to exploit reliable samples in a large amount of unlabeled data for network training.
We experimentally verify that the new dataset can significantly improve the ability of the learned FER model.
To tackle this, we propose to apply a dataset distillation strategy to compress the created dataset into several informative class-wise images.
arXiv Detail & Related papers (2020-05-18T09:36:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.