Distilled Datamodel with Reverse Gradient Matching
- URL: http://arxiv.org/abs/2404.14006v1
- Date: Mon, 22 Apr 2024 09:16:14 GMT
- Title: Distilled Datamodel with Reverse Gradient Matching
- Authors: Jingwen Ye, Ruonan Yu, Songhua Liu, Xinchao Wang,
- Abstract summary: We introduce an efficient framework for assessing data impact, comprising offline training and online evaluation stages.
Our proposed method achieves comparable model behavior evaluation while significantly speeding up the process compared to the direct retraining method.
- Score: 74.75248610868685
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The proliferation of large-scale AI models trained on extensive datasets has revolutionized machine learning. With these models taking on increasingly central roles in various applications, the need to understand their behavior and enhance interpretability has become paramount. To investigate the impact of changes in training data on a pre-trained model, a common approach is leave-one-out retraining. This entails systematically altering the training dataset by removing specific samples to observe resulting changes within the model. However, retraining the model for each altered dataset presents a significant computational challenge, given the need to perform this operation for every dataset variation. In this paper, we introduce an efficient framework for assessing data impact, comprising offline training and online evaluation stages. During the offline training phase, we approximate the influence of training data on the target model through a distilled synset, formulated as a reversed gradient matching problem. For online evaluation, we expedite the leave-one-out process using the synset, which is then utilized to compute the attribution matrix based on the evaluation objective. Experimental evaluations, including training data attribution and assessments of data quality, demonstrate that our proposed method achieves comparable model behavior evaluation while significantly speeding up the process compared to the direct retraining method.
Related papers
- Dynamic Loss-Based Sample Reweighting for Improved Large Language Model Pretraining [55.262510814326035]
Existing reweighting strategies primarily focus on group-level data importance.
We introduce novel algorithms for dynamic, instance-level data reweighting.
Our framework allows us to devise reweighting strategies deprioritizing redundant or uninformative data.
arXiv Detail & Related papers (2025-02-10T17:57:15Z) - DUET: Optimizing Training Data Mixtures via Feedback from Unseen Evaluation Tasks [40.91931801667421]
This paper presents a novel global-to-local algorithm called DUET that can exploit the feedback loop by interleaving a data selection method with Bayesian optimization.
As a result, DUET can efficiently refine the training data mixture from a pool of data domains to maximize the model's performance on the unseen evaluation task.
arXiv Detail & Related papers (2025-02-01T01:52:32Z) - Capturing the Temporal Dependence of Training Data Influence [100.91355498124527]
We formalize the concept of trajectory-specific leave-one-out influence, which quantifies the impact of removing a data point during training.
We propose data value embedding, a novel technique enabling efficient approximation of trajectory-specific LOO.
As data value embedding captures training data ordering, it offers valuable insights into model training dynamics.
arXiv Detail & Related papers (2024-12-12T18:28:55Z) - Scalable Data Ablation Approximations for Language Models through Modular Training and Merging [27.445079398772904]
We propose an efficient method for approximating data ablations which trains individual models on subsets of a training corpus.
We find that, given an arbitrary evaluation set, the perplexity score of a single model trained on a candidate set of data is strongly correlated with perplexity scores of parameter averages of models trained on distinct partitions of that data.
arXiv Detail & Related papers (2024-10-21T06:03:49Z) - Data Shapley in One Training Run [88.59484417202454]
Data Shapley provides a principled framework for attributing data's contribution within machine learning contexts.
Existing approaches require re-training models on different data subsets, which is computationally intensive.
This paper introduces In-Run Data Shapley, which addresses these limitations by offering scalable data attribution for a target model of interest.
arXiv Detail & Related papers (2024-06-16T17:09:24Z) - Unlearning Traces the Influential Training Data of Language Models [31.33791825286853]
This paper presents UnTrac: unlearning traces the influence of a training dataset on the model's performance.
We propose a more scalable approach, UnTrac-Inv, which unlearns a test dataset and evaluates the unlearned model on training datasets.
arXiv Detail & Related papers (2024-01-26T23:17:31Z) - ALP: Action-Aware Embodied Learning for Perception [60.64801970249279]
We introduce Action-Aware Embodied Learning for Perception (ALP)
ALP incorporates action information into representation learning through a combination of optimizing a reinforcement learning policy and an inverse dynamics prediction objective.
We show that ALP outperforms existing baselines in several downstream perception tasks.
arXiv Detail & Related papers (2023-06-16T21:51:04Z) - Training Data Attribution for Diffusion Models [1.1733780065300188]
We propose a novel solution that reveals how training data influence the output of diffusion models through the use of ensembles.
In our approach individual models in an encoded ensemble are trained on carefully engineered splits of the overall training data to permit the identification of influential training examples.
The resulting model ensembles enable efficient ablation of training data influence, allowing us to assess the impact of training data on model outputs.
arXiv Detail & Related papers (2023-06-03T18:36:12Z) - How Training Data Impacts Performance in Learning-based Control [67.7875109298865]
This paper derives an analytical relationship between the density of the training data and the control performance.
We formulate a quality measure for the data set, which we refer to as $rho$-gap.
We show how the $rho$-gap can be applied to a feedback linearizing control law.
arXiv Detail & Related papers (2020-05-25T12:13:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.