Large Language Model in Medical Informatics: Direct Classification and Enhanced Text Representations for Automatic ICD Coding
- URL: http://arxiv.org/abs/2411.06823v1
- Date: Mon, 11 Nov 2024 09:31:46 GMT
- Title: Large Language Model in Medical Informatics: Direct Classification and Enhanced Text Representations for Automatic ICD Coding
- Authors: Zeyd Boukhers, AmeerAli Khan, Qusai Ramadan, Cong Yang,
- Abstract summary: This paper explores the use of Large Language Models (LLM), specifically the LLAMA architecture, to enhance ICD code classification.
We evaluate these methods by comparing them against state-of-the-art approaches.
- Score: 7.0413463890126735
- License:
- Abstract: Addressing the complexity of accurately classifying International Classification of Diseases (ICD) codes from medical discharge summaries is challenging due to the intricate nature of medical documentation. This paper explores the use of Large Language Models (LLM), specifically the LLAMA architecture, to enhance ICD code classification through two methodologies: direct application as a classifier and as a generator of enriched text representations within a Multi-Filter Residual Convolutional Neural Network (MultiResCNN) framework. We evaluate these methods by comparing them against state-of-the-art approaches, revealing LLAMA's potential to significantly improve classification outcomes by providing deep contextual insights into medical texts.
Related papers
- Binary Code Similarity Detection via Graph Contrastive Learning on Intermediate Representations [52.34030226129628]
Binary Code Similarity Detection (BCSD) plays a crucial role in numerous fields, including vulnerability detection, malware analysis, and code reuse identification.
In this paper, we propose IRBinDiff, which mitigates compilation differences by leveraging LLVM-IR with higher-level semantic abstraction.
Our extensive experiments, conducted under varied compilation settings, demonstrate that IRBinDiff outperforms other leading BCSD methods in both One-to-one comparison and One-to-many search scenarios.
arXiv Detail & Related papers (2024-10-24T09:09:20Z) - Auxiliary Knowledge-Induced Learning for Automatic Multi-Label Medical Document Classification [22.323705343864336]
We propose a novel approach for ICD indexing that adopts three ideas.
We use a multi-level deep dilated residual convolution encoder to aggregate the information from the clinical notes.
We formalize the task of ICD classification with auxiliary knowledge of the medical records.
arXiv Detail & Related papers (2024-05-29T13:44:07Z) - ClinLinker: Medical Entity Linking of Clinical Concept Mentions in Spanish [39.81302995670643]
This study presents ClinLinker, a novel approach employing a two-phase pipeline for medical entity linking.
It is based on a SapBERT-based bi-encoder and subsequent re-ranking with a cross-encoder, trained by following a contrastive-learning strategy to be tailored to medical concepts in Spanish.
arXiv Detail & Related papers (2024-04-09T15:04:27Z) - CoRelation: Boosting Automatic ICD Coding Through Contextualized Code
Relation Learning [56.782963838838036]
We propose a novel approach, a contextualized and flexible framework, to enhance the learning of ICD code representations.
Our approach employs a dependent learning paradigm that considers the context of clinical notes in modeling all possible code relations.
arXiv Detail & Related papers (2024-02-24T03:25:28Z) - ICDBigBird: A Contextual Embedding Model for ICD Code Classification [71.58299917476195]
Contextual word embedding models have achieved state-of-the-art results in multiple NLP tasks.
ICDBigBird is a BigBird-based model which can integrate a Graph Convolutional Network (GCN)
Our experiments on a real-world clinical dataset demonstrate the effectiveness of our BigBird-based model on the ICD classification task.
arXiv Detail & Related papers (2022-04-21T20:59:56Z) - Self-supervised Answer Retrieval on Clinical Notes [68.87777592015402]
We introduce CAPR, a rule-based self-supervision objective for training Transformer language models for domain-specific passage matching.
We apply our objective in four Transformer-based architectures: Contextual Document Vectors, Bi-, Poly- and Cross-encoders.
We report that CAPR outperforms strong baselines in the retrieval of domain-specific passages and effectively generalizes across rule-based and human-labeled passages.
arXiv Detail & Related papers (2021-08-02T10:42:52Z) - A Meta-embedding-based Ensemble Approach for ICD Coding Prediction [64.42386426730695]
International Classification of Diseases (ICD) are the de facto codes used globally for clinical coding.
These codes enable healthcare providers to claim reimbursement and facilitate efficient storage and retrieval of diagnostic information.
Our proposed approach enhances the performance of neural models by effectively training word vectors using routine medical data as well as external knowledge from scientific articles.
arXiv Detail & Related papers (2021-02-26T17:49:58Z) - Dilated Convolutional Attention Network for Medical Code Assignment from
Clinical Text [19.701824507057623]
This paper proposes a Dilated Convolutional Attention Network (DCAN), integrating dilated convolutions, residual connections, and label attention, for medical code assignment.
It adopts dilated convolutions to capture complex medical patterns with a receptive field which increases exponentially with dilation size.
arXiv Detail & Related papers (2020-09-30T11:55:58Z) - Learning Contextualized Document Representations for Healthcare Answer
Retrieval [68.02029435111193]
Contextual Discourse Vectors (CDV) is a distributed document representation for efficient answer retrieval from long documents.
Our model leverages a dual encoder architecture with hierarchical LSTM layers and multi-task training to encode the position of clinical entities and aspects alongside the document discourse.
We show that our generalized model significantly outperforms several state-of-the-art baselines for healthcare passage ranking.
arXiv Detail & Related papers (2020-02-03T15:47:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.