Disentangling Geometric Deformation Spaces in Generative Latent Shape
Models
- URL: http://arxiv.org/abs/2103.00142v2
- Date: Sun, 19 Mar 2023 00:56:51 GMT
- Title: Disentangling Geometric Deformation Spaces in Generative Latent Shape
Models
- Authors: Tristan Aumentado-Armstrong, Stavros Tsogkas, Sven Dickinson, and
Allan Jepson
- Abstract summary: A complete representation of 3D objects requires characterizing the space of deformations in an interpretable manner.
We improve on a prior generative model of disentanglement for 3D shapes, wherein the space of object geometry is factorized into rigid orientation, non-rigid pose, and intrinsic shape.
The resulting model can be trained from raw 3D shapes, without correspondences, labels, or even rigid alignment.
- Score: 5.582957809895198
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: A complete representation of 3D objects requires characterizing the space of
deformations in an interpretable manner, from articulations of a single
instance to changes in shape across categories. In this work, we improve on a
prior generative model of geometric disentanglement for 3D shapes, wherein the
space of object geometry is factorized into rigid orientation, non-rigid pose,
and intrinsic shape. The resulting model can be trained from raw 3D shapes,
without correspondences, labels, or even rigid alignment, using a combination
of classical spectral geometry and probabilistic disentanglement of a
structured latent representation space. Our improvements include more
sophisticated handling of rotational invariance and the use of a diffeomorphic
flow network to bridge latent and spectral space. The geometric structuring of
the latent space imparts an interpretable characterization of the deformation
space of an object. Furthermore, it enables tasks like pose transfer and
pose-aware retrieval without requiring supervision. We evaluate our model on
its generative modelling, representation learning, and disentanglement
performance, showing improved rotation invariance and intrinsic-extrinsic
factorization quality over the prior model.
Related papers
- NeuSDFusion: A Spatial-Aware Generative Model for 3D Shape Completion, Reconstruction, and Generation [52.772319840580074]
3D shape generation aims to produce innovative 3D content adhering to specific conditions and constraints.
Existing methods often decompose 3D shapes into a sequence of localized components, treating each element in isolation.
We introduce a novel spatial-aware 3D shape generation framework that leverages 2D plane representations for enhanced 3D shape modeling.
arXiv Detail & Related papers (2024-03-27T04:09:34Z) - Spectral Meets Spatial: Harmonising 3D Shape Matching and Interpolation [50.376243444909136]
We present a unified framework to predict both point-wise correspondences and shape between 3D shapes.
We combine the deep functional map framework with classical surface deformation models to map shapes in both spectral and spatial domains.
arXiv Detail & Related papers (2024-02-29T07:26:23Z) - Explorable Mesh Deformation Subspaces from Unstructured Generative
Models [53.23510438769862]
Deep generative models of 3D shapes often feature continuous latent spaces that can be used to explore potential variations.
We present a method to explore variations among a given set of landmark shapes by constructing a mapping from an easily-navigable 2D exploration space to a subspace of a pre-trained generative model.
arXiv Detail & Related papers (2023-10-11T18:53:57Z) - CaDeX: Learning Canonical Deformation Coordinate Space for Dynamic
Surface Representation via Neural Homeomorphism [46.234728261236015]
We introduce Canonical Deformation Coordinate Space (CaDeX), a unified representation of both shape and nonrigid motion.
Our novel deformation representation and its implementation are simple, efficient, and guarantee cycle consistency.
We demonstrate state-of-the-art performance in modelling a wide range of deformable objects.
arXiv Detail & Related papers (2022-03-30T17:59:23Z) - SPAMs: Structured Implicit Parametric Models [30.19414242608965]
We learn Structured-implicit PArametric Models (SPAMs) as a deformable object representation that structurally decomposes non-rigid object motion into part-based disentangled representations of shape and pose.
Experiments demonstrate that our part-aware shape and pose understanding lead to state-of-the-art performance in reconstruction and tracking of depth sequences of complex deforming object motion.
arXiv Detail & Related papers (2022-01-20T12:33:46Z) - Learning Canonical 3D Object Representation for Fine-Grained Recognition [77.33501114409036]
We propose a novel framework for fine-grained object recognition that learns to recover object variation in 3D space from a single image.
We represent an object as a composition of 3D shape and its appearance, while eliminating the effect of camera viewpoint.
By incorporating 3D shape and appearance jointly in a deep representation, our method learns the discriminative representation of the object.
arXiv Detail & Related papers (2021-08-10T12:19:34Z) - Deep Implicit Templates for 3D Shape Representation [70.9789507686618]
We propose a new 3D shape representation that supports explicit correspondence reasoning in deep implicit representations.
Our key idea is to formulate DIFs as conditional deformations of a template implicit function.
We show that our method can not only learn a common implicit template for a collection of shapes, but also establish dense correspondences across all the shapes simultaneously without any supervision.
arXiv Detail & Related papers (2020-11-30T06:01:49Z) - Dense Non-Rigid Structure from Motion: A Manifold Viewpoint [162.88686222340962]
Non-Rigid Structure-from-Motion (NRSfM) problem aims to recover 3D geometry of a deforming object from its 2D feature correspondences across multiple frames.
We show that our approach significantly improves accuracy, scalability, and robustness against noise.
arXiv Detail & Related papers (2020-06-15T09:15:54Z) - ShapeFlow: Learnable Deformations Among 3D Shapes [28.854946339507123]
We present a flow-based model for learning a deformation space for entire classes of 3D shapes with large intra-class variations.
ShapeFlow allows learning a multi-template deformation space that is agnostic to shape topology, yet preserves fine geometric details.
arXiv Detail & Related papers (2020-06-14T19:03:35Z) - Instant recovery of shape from spectrum via latent space connections [33.83258865005668]
We introduce the first learning-based method for recovering shapes from Laplacian spectra.
Given an auto-encoder, our model takes the form of a cycle-consistent module to map latent vectors to sequences of eigenvalues.
Our data-driven approach replaces the need for ad-hoc regularizers required by prior methods, while providing more accurate results at a fraction of the computational cost.
arXiv Detail & Related papers (2020-03-14T00:48:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.