Spectral Meets Spatial: Harmonising 3D Shape Matching and Interpolation
- URL: http://arxiv.org/abs/2402.18920v5
- Date: Wed, 27 Mar 2024 07:16:21 GMT
- Title: Spectral Meets Spatial: Harmonising 3D Shape Matching and Interpolation
- Authors: Dongliang Cao, Marvin Eisenberger, Nafie El Amrani, Daniel Cremers, Florian Bernard,
- Abstract summary: We present a unified framework to predict both point-wise correspondences and shape between 3D shapes.
We combine the deep functional map framework with classical surface deformation models to map shapes in both spectral and spatial domains.
- Score: 50.376243444909136
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Although 3D shape matching and interpolation are highly interrelated, they are often studied separately and applied sequentially to relate different 3D shapes, thus resulting in sub-optimal performance. In this work we present a unified framework to predict both point-wise correspondences and shape interpolation between 3D shapes. To this end, we combine the deep functional map framework with classical surface deformation models to map shapes in both spectral and spatial domains. On the one hand, by incorporating spatial maps, our method obtains more accurate and smooth point-wise correspondences compared to previous functional map methods for shape matching. On the other hand, by introducing spectral maps, our method gets rid of commonly used but computationally expensive geodesic distance constraints that are only valid for near-isometric shape deformations. Furthermore, we propose a novel test-time adaptation scheme to capture both pose-dominant and shape-dominant deformations. Using different challenging datasets, we demonstrate that our method outperforms previous state-of-the-art methods for both shape matching and interpolation, even compared to supervised approaches.
Related papers
- Synchronous Diffusion for Unsupervised Smooth Non-Rigid 3D Shape Matching [15.843208029973175]
We propose a synchronous diffusion process which we use as regularisation to achieve smoothness in non-rigid 3D shape matching problems.
We demonstrate that our novel regularisation can substantially improve the state-of-the-art in shape matching, especially in the presence of topological noise.
arXiv Detail & Related papers (2024-07-11T07:45:06Z) - Deformation-Guided Unsupervised Non-Rigid Shape Matching [7.327850781641328]
We present an unsupervised data-driven approach for non-rigid shape matching.
Our approach is particularly robust when matching digitized shapes using 3D scanners.
arXiv Detail & Related papers (2023-11-27T09:55:55Z) - Explorable Mesh Deformation Subspaces from Unstructured Generative
Models [53.23510438769862]
Deep generative models of 3D shapes often feature continuous latent spaces that can be used to explore potential variations.
We present a method to explore variations among a given set of landmark shapes by constructing a mapping from an easily-navigable 2D exploration space to a subspace of a pre-trained generative model.
arXiv Detail & Related papers (2023-10-11T18:53:57Z) - Geometrically Consistent Partial Shape Matching [50.29468769172704]
Finding correspondences between 3D shapes is a crucial problem in computer vision and graphics.
An often neglected but essential property of matching geometrics is consistency.
We propose a novel integer linear programming partial shape matching formulation.
arXiv Detail & Related papers (2023-09-10T12:21:42Z) - Neural Semantic Surface Maps [52.61017226479506]
We present an automated technique for computing a map between two genus-zero shapes, which matches semantically corresponding regions to one another.
Our approach can generate semantic surface-to-surface maps, eliminating manual annotations or any 3D training data requirement.
arXiv Detail & Related papers (2023-09-09T16:21:56Z) - A Scalable Combinatorial Solver for Elastic Geometrically Consistent 3D
Shape Matching [69.14632473279651]
We present a scalable algorithm for globally optimizing over the space of geometrically consistent mappings between 3D shapes.
We propose a novel primal coupled with a Lagrange dual problem that is several orders of magnitudes faster than previous solvers.
arXiv Detail & Related papers (2022-04-27T09:47:47Z) - NeuroMorph: Unsupervised Shape Interpolation and Correspondence in One
Go [109.88509362837475]
We present NeuroMorph, a new neural network architecture that takes as input two 3D shapes.
NeuroMorph produces smooth and point-to-point correspondences between them.
It works well for a large variety of input shapes, including non-isometric pairs from different object categories.
arXiv Detail & Related papers (2021-06-17T12:25:44Z) - Spectral Unions of Partial Deformable 3D Shapes [31.93707121229739]
We introduce the first method to compute compositions of non-rigidly deforming shapes, without requiring to solve first for a dense correspondence between the given partial shapes.
Our approach is data-driven, and can generalize to isometric and non-isometric deformations of the surface.
arXiv Detail & Related papers (2021-03-31T14:19:18Z) - Instant recovery of shape from spectrum via latent space connections [33.83258865005668]
We introduce the first learning-based method for recovering shapes from Laplacian spectra.
Given an auto-encoder, our model takes the form of a cycle-consistent module to map latent vectors to sequences of eigenvalues.
Our data-driven approach replaces the need for ad-hoc regularizers required by prior methods, while providing more accurate results at a fraction of the computational cost.
arXiv Detail & Related papers (2020-03-14T00:48:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.