論文の概要: COVID-19 Tweets Analysis through Transformer Language Models
- arxiv url: http://arxiv.org/abs/2103.00199v1
- Date: Sat, 27 Feb 2021 12:06:33 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-05 11:40:09.554722
- Title: COVID-19 Tweets Analysis through Transformer Language Models
- Title(参考訳): トランスフォーマー言語モデルによるcovid-19ツイートの解析
- Authors: Abdul Hameed Azeemi, Adeel Waheed
- Abstract要約: 本研究では、COVID-19におけるツイートの詳細な感情分析を行う。
訓練されたトランスフォーマーモデルは、ツイートのトーンを高精度で正確に予測することができる。
次にこのモデルを利用して、covid-19の20万ツイートのトーンを予測する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Understanding the public sentiment and perception in a healthcare crisis is
essential for developing appropriate crisis management techniques. While some
studies have used Twitter data for predictive modelling during COVID-19,
fine-grained sentiment analysis of the opinion of people on social media during
this pandemic has not yet been done. In this study, we perform an in-depth,
fine-grained sentiment analysis of tweets in COVID-19. For this purpose, we
perform supervised training of four transformer language models on the
downstream task of multi-label classification of tweets into seven tone
classes: [confident, anger, fear, joy, sadness, analytical, tentative]. We
achieve a LRAP (Label Ranking Average Precision) score of 0.9267 through
RoBERTa. This trained transformer model is able to correctly predict, with high
accuracy, the tone of a tweet. We then leverage this model for predicting tones
for 200,000 tweets on COVID-19. We then perform a country-wise analysis of the
tone of tweets, and extract useful indicators of the psychological condition
about the people in this pandemic.
- Abstract(参考訳): 医療危機における公衆の感情と認識を理解することは、適切な危機管理技術の開発に不可欠です。
新型コロナウイルス(COVID-19)の予測モデルにTwitterのデータを使用した研究もあるが、このパンデミックの間、ソーシャルメディア上の人々の意見のきめ細かい感情分析はまだ行われていない。
本研究では、COVID-19におけるツイートの詳細な感情分析を行う。
そこで本稿では,ツイートのマルチラベル分類の下流タスクにおける4つのトランスフォーマー言語モデルの教師あり学習を, [信頼, 怒り, 恐怖, 悲しみ, 分析, 仮の]7つのクラスに分けて実施する。
LRAP(Label Ranking Average Precision)スコア0.9267をRoBERTaで達成します。
このトレーニングされたトランスフォーマーモデルは、ツイートのトーンを高精度で正確に予測することができる。
次にこのモデルを利用して、covid-19の20万ツイートのトーンを予測する。
次に、ツイートのトーンを国別に分析し、このパンデミックの人々の心理的状態の有用な指標を抽出します。
関連論文リスト
- Look Hear: Gaze Prediction for Speech-directed Human Attention [49.81718760025951]
本研究は、人物が画像を見て、参照表現を聴いているときの注意の漸進的な予測に焦点を当てた。
我々は,参照表現において各単語が引き起こす人間の定着を予測できるリファラルトランスフォーマーモデル(ART)を開発した。
定量的および定性的な分析では、ARTはスキャンパス予測の既存の手法よりも優れているだけでなく、いくつかの人間の注意パターンを捉えているように見える。
論文 参考訳(メタデータ) (2024-07-28T22:35:08Z) - Adaptive Human Trajectory Prediction via Latent Corridors [49.13061580045407]
シーン固有の適応軌道予測の問題を定式化する。
本稿では,潜伏回廊と呼ばれる即時チューニングにインスパイアされた新しい適応手法を提案する。
0.1%の追加モデルパラメータでは、MOTシンスシミュレーションデータの改善が23.9%、MOTおよびワイルドトラックにおけるADEが16.4%となる。
論文 参考訳(メタデータ) (2023-12-11T18:59:12Z) - Understanding writing style in social media with a supervised
contrastively pre-trained transformer [57.48690310135374]
オンラインソーシャルネットワークは、ヘイトスピーチから偽情報の拡散まで、有害な行動の場として機能している。
本稿では, 4.5 x 106テキストの公開資料から得られた大規模コーパスに基づいて学習したStyle Transformer for Authorship Representations (STAR)を紹介する。
512個のトークンからなる8つのドキュメントからなるサポートベースを使用して、著者を最大1616人の著者のセットから、少なくとも80%の精度で識別することができる。
論文 参考訳(メタデータ) (2023-10-17T09:01:17Z) - 5q032e@SMM4H'22: Transformer-based classification of premise in tweets
related to COVID-19 [2.3931689873603603]
本研究では,Twitterテキストにおける前提の存在を分類するために,トランスフォーマーアーキテクチャに基づく予測モデルを提案する。
Twitterデータセットを用いた実験の結果,RoBERTaは前提予測タスクの場合,他のトランスフォーマーモデルよりも優れていることがわかった。
論文 参考訳(メタデータ) (2022-09-08T14:46:28Z) - Twitter conversations predict the daily confirmed COVID-19 cases [0.2320417845168326]
パンデミック特有の談話は、TwitterやWeiboのようなマイクロブログプラットフォーム上では、今も続いている。
本稿では、新型コロナウイルス関連Twitter会話から複数の時系列を設計するための感情関連トピックベースの方法論を提案する。
モデリングにソーシャルメディア変数を組み込むことで、RMSEのベースラインモデルよりも48.83-51.38%の改善がもたらされることが示されている。
論文 参考訳(メタデータ) (2022-06-21T15:31:06Z) - Twitter-COMMs: Detecting Climate, COVID, and Military Multimodal
Misinformation [83.2079454464572]
本稿では,DARPAセマンティック・フォレスティクス(SemaFor)プログラムにおける画像テキスト不整合検出へのアプローチについて述べる。
Twitter-COMMsは大規模マルチモーダルデータセットで、884万のツイートが気候変動、新型コロナウイルス、軍用車両のトピックに関連する。
我々は、最先端のCLIPモデルに基づいて、自動生成されたランダムとハードのネガネガネガネガネガネガネガネガネガネガネガネガネガネガネガネガネガネガネガネガネガネガネガネガネガネガネガネガネガネガネガネガネガネガネガネガネガネガネガネガネガネガネガネガネガネガネガネガネガネガ
論文 参考訳(メタデータ) (2021-12-16T03:37:20Z) - Variance of Twitter Embeddings and Temporal Trends of COVID-19 cases [0.9449650062296824]
本稿では,ソーシャルメディア,特にTwitterを活用すれば,新型コロナウイルス関連シナリオを予測する方法を提案する。
単語埋め込みを用いてツイートの意味を捉えることで、重要な次元(SD)を識別する。
本手法は, リードタイムが15日, R2スコアが0.80, 0.62の症例の増加を予測した。
論文 参考訳(メタデータ) (2021-09-30T18:03:10Z) - Misleading the Covid-19 vaccination discourse on Twitter: An exploratory
study of infodemic around the pandemic [0.45593531937154413]
我々は7ヶ月(2020年9月~2021年3月)のコビッドウイルスワクチン接種に関連する中規模のツイートコーパス(20万件)を収集する。
Transfer Learningのアプローチに従えば、事前訓練されたTransformerベースのXLNetモデルを使用して、ツイートをミスリーディングまたは非ミスリーディングに分類する。
我々は、自然に誤解を招くコーパスのツイートの特徴と非誤解を招くツイートの特徴を調査・対比するためにこの手法を構築した。
いくつかのMLモデルは、最大90%の精度で予測に使用され、各特徴の重要性は、SHAP Explainable AI (X)を用いて説明される。
論文 参考訳(メタデータ) (2021-08-16T17:02:18Z) - Changes in European Solidarity Before and During COVID-19: Evidence from
a Large Crowd- and Expert-Annotated Twitter Dataset [77.27709662210363]
我々は,NLPにおける教師付き機械学習の新たな課題として,社会的連帯という社会科学的概念とその競争,反連帯の概念を導入する。
我々は,複数のアノテータと2つのアノテーションアプローチ(専門家対群衆)を利用して,(反)整合性表現のための2.3kの英語とドイツ語のつぶやきを注釈する。
今回の結果は、新型コロナウイルス危機で連帯がますます健全になり、競争が激化したことを示している。
論文 参考訳(メタデータ) (2021-08-02T17:03:12Z) - Sentiment Analysis of Covid-19 Tweets using Evolutionary
Classification-Based LSTM Model [0.6445605125467573]
本稿では,コロナウイルスやコビッドウイルスに関する大量のツイートの感情分析について述べる。
我々は、進化的分類とn-gram分析によるCovid-19流行に関連するトピックに対する世論感情の傾向を分析した。
我々は、Covid-19のデータに対する感情を予測するために、2種類の評価されたつぶやきを使用して、長期間のネットワークを訓練し、全体の精度は84.46%に達した。
論文 参考訳(メタデータ) (2021-06-13T04:27:21Z) - Cross-lingual Transfer Learning for COVID-19 Outbreak Alignment [90.12602012910465]
われわれは、Twitterを通じてイタリアの新型コロナウイルス感染症(COVID-19)の早期流行を訓練し、他のいくつかの国に移る。
実験の結果,クロスカントリー予測において最大0.85のスピアマン相関が得られた。
論文 参考訳(メタデータ) (2020-06-05T02:04:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。